Sample stimuli

sample 0 sample 1 sample 2 sample 3 sample 4 sample 5 sample 6 sample 7 sample 8 sample 9

How to use

from brainscore_vision import load_benchmark
benchmark = load_benchmark("Marques2020_Ringach2002-circular_variance")
score = benchmark(my_model)

Model scores

Min Alignment Max Alignment

Rank

Model

Score

1
.984
2
.982
3
.975
4
.973
5
.973
6
.971
7
.969
8
.966
9
.961
10
.962
11
.958
12
.958
13
.955
14
.951
15
.949
16
.946
17
.947
18
.946
19
.944
20
.942
21
.942
22
.942
23
.938
24
.936
25
.935
26
.935
27
.934
28
.930
29
.929
30
.926
31
.925
32
.924
33
.923
34
.923
35
.922
36
.921
37
.921
38
.919
39
.918
40
.917
41
.916
42
.915
43
.916
44
.912
45
.912
46
.912
47
.911
48
.909
49
.909
50
.908
51
.906
52
.907
53
.905
54
.903
55
.902
56
.900
57
.897
58
.899
59
.898
60
.895
61
.896
62
.896
63
.893
64
.893
65
.892
66
.892
67
.892
68
.890
69
.890
70
.889
71
.889
72
.887
73
.884
74
.885
75
.884
76
.882
77
.882
78
.882
79
.879
80
.878
81
.878
82
.877
83
.876
84
.875
85
.875
86
.873
87
.874
88
.873
89
.872
90
.872
91
.871
92
.871
93
.871
94
.870
95
.867
96
.868
97
.868
98
.866
99
.864
100
.865
101
.865
102
.864
103
.865
104
.865
105
.865
106
.864
107
.865
108
.863
109
.863
110
.863
111
.863
112
.862
113
.862
114
.862
115
.861
116
.861
117
.862
118
.861
119
.862
120
.861
121
.861
122
.860
123
.859
124
.858
125
.858
126
.858
127
.857
128
.857
129
.857
130
.857
131
.857
132
.856
133
.856
134
.856
135
.855
136
.855
137
.855
138
.855
139
.854
140
.852
141
.850
142
.850
143
.848
144
.847
145
.847
146
.845
147
.845
148
.843
149
.843
150
.843
151
.840
152
.840
153
.838
154
.838
155
.837
156
.836
157
.835
158
.835
159
.835
160
.835
161
.833
162
.833
163
.832
164
.832
165
.830
166
.831
167
.831
168
.830
169
.830
170
.828
171
.826
172
.825
173
.825
174
.822
175
.820
176
.819
177
.818
178
.818
179
.817
180
.817
181
.814
182
.813
183
.814
184
.813
185
.813
186
.812
187
.811
188
.812
189
.809
190
.810
191
.808
192
.806
193
.806
194
.803
195
.800
196
.799
197
.797
198
.797
199
.796
200
.792
201
.791
202
.791
203
.790
204
.788
205
.788
206
.787
207
.787
208
.785
209
.786
210
.777
211
.777
212
.773
213
.773
214
.771
215
.769
216
.766
217
.765
218
.763
219
.761
220
.760
221
.759
222
.759
223
.758
224
.757
225
.757
226
.756
227
.754
228
.754
229
.754
230
.749
231
.747
232
.745
233
.744
234
.743
235
.742
236
.741
237
.739
238
.740
239
.739
240
.738
241
.736
242
.732
243
.730
244
.727
245
.727
246
.727
247
.727
248
.726
249
.725
250
.722
251
.721
252
.717
253
.716
254
.715
255
.714
256
.709
257
.709
258
.708
259
.703
260
.703
261
.701
262
.702
263
.700
264
.700
265
.700
266
.696
267
.695
268
.695
269
.694
270
.693
271
.693
272
.691
273
.691
274
.690
275
.689
276
.687
277
.687
278
.686
279
.685
280
.684
281
.682
282
.681
283
.680
284
.680
285
.676
286
.675
287
.674
288
.670
289
.668
290
.667
291
.667
292
.665
293
.662
294
.660
295
.658
296
.658
297
.657
298
.656
299
.655
300
.654
301
.649
302
.648
303
.646
304
.645
305
.644
306
.645
307
.641
308
.627
309
.624
310
.625
311
.623
312
.621
313
.621
314
.619
315
.616
316
.615
317
.615
318
.613
319
.610
320
.605
321
.604
322
.600
323
.597
324
.597
325
.596
326
.591
327
.589
328
.590
329
.581
330
.577
331
.570
332
.565
333
.560
334
.557
335
.554
336
.550
337
.550
338
.535
339
.519
340
.516
341
.515
342
.493
343
.490
344
.462
345
.459
346
.447
347
.385
348
.375
349
.375
350
.355
351
.271
352
.271
353
.215
354
.170
355
.169
356
.081
357
.028
358
X
359
X
360
X
361
X
362
X
363
X
364
X
365
X
366
X
367
X
368
X
369
X
370
X
371
X
372
X
373
X
374
X
375
X
376
X
377
X
378
X
379
X
380
X
381
X
382
X
383
X
384
X

Benchmark bibtex

None

Ceiling

0.96.

Note that scores are relative to this ceiling.

Data: Marques2020_Ringach2002

Metric: circular_variance