Scores on benchmarks

Model rank shown below is with respect to all public models.
.303 average_vision rank 122
81 benchmarks
.303
0
ceiling
best
median
.322 neural_vision rank 84
38 benchmarks
.322
0
ceiling
best
median
.310 V1 rank 291
24 benchmarks
.310
0
ceiling
best
median
.004 Coggan2024_fMRI.V1-rdm v1 rank 157
.004
0
ceiling
best
median
sample 0 sample 1 sample 2 sample 3 sample 4 sample 5 sample 6 sample 7 sample 8 sample 9
.681 Marques2020 [reference] rank 259
22 benchmarks
.681
0
ceiling
best
median
.758 V1-orientation rank 287
7 benchmarks
.758
0
ceiling
best
median
.765 Marques2020_Ringach2002-or_selective v1 rank 307
.765
0
ceiling
best
median
sample 0 sample 1 sample 2 sample 3 sample 4 sample 5 sample 6 sample 7 sample 8 sample 9
.667 Marques2020_Ringach2002-circular_variance v1 rank 292
.667
0
ceiling
best
median
sample 0 sample 1 sample 2 sample 3 sample 4 sample 5 sample 6 sample 7 sample 8 sample 9
.594 Marques2020_Ringach2002-orth_pref_ratio v1 rank 303
.594
0
ceiling
best
median
sample 0 sample 1 sample 2 sample 3 sample 4 sample 5 sample 6 sample 7 sample 8 sample 9
.836 Marques2020_Ringach2002-cv_bandwidth_ratio v1 rank 183
.836
0
ceiling
best
median
sample 0 sample 1 sample 2 sample 3 sample 4 sample 5 sample 6 sample 7 sample 8 sample 9
.900 Marques2020_DeValois1982-pref_or v1 rank 251
.900
0
ceiling
best
median
sample 0 sample 1 sample 2 sample 3 sample 4 sample 5 sample 6 sample 7 sample 8 sample 9
.712 Marques2020_Ringach2002-opr_cv_diff v1 rank 309
.712
0
ceiling
best
median
sample 0 sample 1 sample 2 sample 3 sample 4 sample 5 sample 6 sample 7 sample 8 sample 9
.830 Marques2020_Ringach2002-or_bandwidth v1 rank 201
.830
0
ceiling
best
median
sample 0 sample 1 sample 2 sample 3 sample 4 sample 5 sample 6 sample 7 sample 8 sample 9
.726 V1-spatial_frequency rank 245
3 benchmarks
.726
0
ceiling
best
median
.747 Marques2020_DeValois1982-peak_sf v1 rank 140
.747
0
ceiling
best
median
sample 0 sample 1 sample 2 sample 3 sample 4 sample 5 sample 6 sample 7 sample 8 sample 9
.595 Marques2020_Schiller1976-sf_bandwidth v1 [reference] rank 305
.595
0
ceiling
best
median
sample 0 sample 1 sample 2 sample 3 sample 4 sample 5 sample 6 sample 7 sample 8 sample 9
.836 Marques2020_Schiller1976-sf_selective v1 [reference] rank 208
.836
0
ceiling
best
median
sample 0 sample 1 sample 2 sample 3 sample 4 sample 5 sample 6 sample 7 sample 8 sample 9
.721 V1-response_selectivity rank 66
4 benchmarks
.721
0
ceiling
best
median
.801 Marques2020_FreemanZiemba2013-texture_selectivity v1 [reference] rank 107
.801
0
ceiling
best
median
sample 0 sample 1 sample 2 sample 3 sample 4 sample 5 sample 6 sample 7 sample 8 sample 9
.308 Marques2020_Ringach2002-modulation_ratio v1 rank 298
.308
0
ceiling
best
median
sample 0 sample 1 sample 2 sample 3 sample 4 sample 5 sample 6 sample 7 sample 8 sample 9
.952 Marques2020_FreemanZiemba2013-texture_variance_ratio v1 [reference] rank 13
.952
0
ceiling
best
median
sample 0 sample 1 sample 2 sample 3 sample 4 sample 5 sample 6 sample 7 sample 8 sample 9
.823 Marques2020_FreemanZiemba2013-texture_sparseness v1 [reference] rank 55
.823
0
ceiling
best
median
sample 0 sample 1 sample 2 sample 3 sample 4 sample 5 sample 6 sample 7 sample 8 sample 9
.754 V1-receptive_field_size rank 84
2 benchmarks
.754
0
ceiling
best
median
.769 Marques2020_Cavanaugh2002-grating_summation_field v1 [reference] rank 106
.769
0
ceiling
best
median
sample 0 sample 1 sample 2 sample 3 sample 4 sample 5 sample 6 sample 7 sample 8 sample 9
.738 Marques2020_Cavanaugh2002-surround_diameter v1 [reference] rank 80
.738
0
ceiling
best
median
sample 0 sample 1 sample 2 sample 3 sample 4 sample 5 sample 6 sample 7 sample 8 sample 9
.603 V1-surround_modulation rank 195
1 benchmark
.603
0
ceiling
best
median
.603 Marques2020_Cavanaugh2002-surround_suppression_index v1 [reference] rank 195
.603
0
ceiling
best
median
sample 0 sample 1 sample 2 sample 3 sample 4 sample 5 sample 6 sample 7 sample 8 sample 9
.457 V1-texture_modulation rank 315
2 benchmarks
.457
0
ceiling
best
median
.409 Marques2020_FreemanZiemba2013-abs_texture_modulation_index v1 [reference] rank 284
.409
0
ceiling
best
median
sample 0 sample 1 sample 2 sample 3 sample 4 sample 5 sample 6 sample 7 sample 8 sample 9
.506 Marques2020_FreemanZiemba2013-texture_modulation_index v1 [reference] rank 324
.506
0
ceiling
best
median
sample 0 sample 1 sample 2 sample 3 sample 4 sample 5 sample 6 sample 7 sample 8 sample 9
.750 V1-response_magnitude rank 292
3 benchmarks
.750
0
ceiling
best
median
.725 Marques2020_FreemanZiemba2013-max_texture v1 [reference] rank 280
.725
0
ceiling
best
median
sample 0 sample 1 sample 2 sample 3 sample 4 sample 5 sample 6 sample 7 sample 8 sample 9
.915 Marques2020_Ringach2002-max_dc v1 rank 266
.915
0
ceiling
best
median
sample 0 sample 1 sample 2 sample 3 sample 4 sample 5 sample 6 sample 7 sample 8 sample 9
.609 Marques2020_FreemanZiemba2013-max_noise v1 [reference] rank 305
.609
0
ceiling
best
median
sample 0 sample 1 sample 2 sample 3 sample 4 sample 5 sample 6 sample 7 sample 8 sample 9
.246 FreemanZiemba2013.V1-pls v2 [reference] rank 281
.246
0
ceiling
best
median
recordings from 102 sites in V1
sample 0 sample 1 sample 2 sample 3 sample 4 sample 5 sample 6 sample 7 sample 8 sample 9
.208 V2 rank 57
2 benchmarks
.208
0
ceiling
best
median
.080 Coggan2024_fMRI.V2-rdm v1 rank 82
.080
0
ceiling
best
median
sample 0 sample 1 sample 2 sample 3 sample 4 sample 5 sample 6 sample 7 sample 8 sample 9
.336 FreemanZiemba2013.V2-pls v2 [reference] rank 55
.336
0
ceiling
best
median
recordings from 103 sites in V2
sample 0 sample 1 sample 2 sample 3 sample 4 sample 5 sample 6 sample 7 sample 8 sample 9
.395 V4 rank 68
5 benchmarks
.395
0
ceiling
best
median
.107 Coggan2024_fMRI.V4-rdm v1 rank 28
.107
0
ceiling
best
median
sample 0 sample 1 sample 2 sample 3 sample 4 sample 5 sample 6 sample 7 sample 8 sample 9
.467 SanghaviJozwik2020.V4-pls v1 [reference] rank 197
.467
0
ceiling
best
median
recordings from 50 sites in V4
sample 0 sample 1 sample 2 sample 3 sample 4 sample 5 sample 6 sample 7 sample 8 sample 9
.608 Sanghavi2020.V4-pls v1 [reference] rank 241
.608
0
ceiling
best
median
recordings from 47 sites in V4
sample 0 sample 1 sample 2 sample 3 sample 4 sample 5 sample 6 sample 7 sample 8 sample 9
.237 SanghaviMurty2020.V4-pls v1 [reference] rank 62
.237
0
ceiling
best
median
recordings from 46 sites in V4
sample 0 sample 1 sample 2 sample 3 sample 4 sample 5 sample 6 sample 7 sample 8 sample 9
.558 MajajHong2015.V4-pls v3 [reference] rank 260
.558
0
ceiling
best
median
recordings from 88 sites in V4
sample 0 sample 1 sample 2 sample 3 sample 4 sample 5 sample 6 sample 7 sample 8 sample 9
.375 IT rank 55
7 benchmarks
.375
0
ceiling
best
median
.347 Bracci2019.anteriorVTC-rdm v1 rank 39
.347
0
ceiling
best
median
sample 0 sample 1 sample 2 sample 3 sample 4 sample 5 sample 6 sample 7 sample 8 sample 9
.327 Coggan2024_fMRI.IT-rdm v1 rank 96
.327
0
ceiling
best
median
sample 0 sample 1 sample 2 sample 3 sample 4 sample 5 sample 6 sample 7 sample 8 sample 9
.365 SanghaviMurty2020.IT-pls v1 [reference] rank 147
.365
0
ceiling
best
median
recordings from 29 sites in IT
sample 0 sample 1 sample 2 sample 3 sample 4 sample 5 sample 6 sample 7 sample 8 sample 9
.537 Sanghavi2020.IT-pls v1 [reference] rank 93
.537
0
ceiling
best
median
recordings from 88 sites in IT
sample 0 sample 1 sample 2 sample 3 sample 4 sample 5 sample 6 sample 7 sample 8 sample 9
.503 SanghaviJozwik2020.IT-pls v1 [reference] rank 131
.503
0
ceiling
best
median
recordings from 26 sites in IT
sample 0 sample 1 sample 2 sample 3 sample 4 sample 5 sample 6 sample 7 sample 8 sample 9
.548 MajajHong2015.IT-pls v3 [reference] rank 47
.548
0
ceiling
best
median
recordings from 168 sites in IT
sample 0 sample 1 sample 2 sample 3 sample 4 sample 5 sample 6 sample 7 sample 8 sample 9
X Kar2019-ost v2 [reference] rank X
X
0
ceiling
best
median
recordings from 424 sites in IT
sample 0 sample 1 sample 2 sample 3 sample 4 sample 5 sample 6 sample 7 sample 8 sample 9
.285 behavior_vision rank 135
43 benchmarks
.285
0
ceiling
best
median
.413 Rajalingham2018-i2n v2 [reference] rank 260
.413
0
ceiling
best
median
match-to-sample task
sample 0 sample 1 sample 2 sample 3 sample 4 sample 5 sample 6 sample 7 sample 8 sample 9
.142 Geirhos2021-error_consistency [reference] rank 181
17 benchmarks
.142
0
ceiling
best
median
.228 Geirhos2021colour-error_consistency v1 [reference] rank 177
.228
0
ceiling
best
median
sample 0 sample 1 sample 2 sample 3 sample 4 sample 5 sample 6 sample 7 sample 8 sample 9
.088 Geirhos2021contrast-error_consistency v1 [reference] rank 219
.088
0
ceiling
best
median
sample 0 sample 1 sample 2 sample 3 sample 4 sample 5 sample 6 sample 7 sample 8 sample 9
.164 Geirhos2021cueconflict-error_consistency v1 [reference] rank 151
.164
0
ceiling
best
median
sample 0 sample 1 sample 2 sample 3 sample 4 sample 5 sample 6 sample 7 sample 8 sample 9
.106 Geirhos2021edge-error_consistency v1 [reference] rank 89
.106
0
ceiling
best
median
sample 0 sample 1 sample 2 sample 3 sample 4 sample 5 sample 6 sample 7 sample 8 sample 9
.235 Geirhos2021eidolonI-error_consistency v1 [reference] rank 196
.235
0
ceiling
best
median
sample 0 sample 1 sample 2 sample 3 sample 4 sample 5 sample 6 sample 7 sample 8 sample 9
.266 Geirhos2021eidolonII-error_consistency v1 [reference] rank 166
.266
0
ceiling
best
median
sample 0 sample 1 sample 2 sample 3 sample 4 sample 5 sample 6 sample 7 sample 8 sample 9
.283 Geirhos2021eidolonIII-error_consistency v1 [reference] rank 152
.283
0
ceiling
best
median
sample 0 sample 1 sample 2 sample 3 sample 4 sample 5 sample 6 sample 7 sample 8 sample 9
.175 Geirhos2021falsecolour-error_consistency v1 [reference] rank 183
.175
0
ceiling
best
median
sample 0 sample 1 sample 2 sample 3 sample 4 sample 5 sample 6 sample 7 sample 8 sample 9
.036 Geirhos2021highpass-error_consistency v1 [reference] rank 210
.036
0
ceiling
best
median
sample 0 sample 1 sample 2 sample 3 sample 4 sample 5 sample 6 sample 7 sample 8 sample 9
.108 Geirhos2021lowpass-error_consistency v1 [reference] rank 175
.108
0
ceiling
best
median
sample 0 sample 1 sample 2 sample 3 sample 4 sample 5 sample 6 sample 7 sample 8 sample 9
.007 Geirhos2021phasescrambling-error_consistency v1 [reference] rank 280
.007
0
ceiling
best
median
sample 0 sample 1 sample 2 sample 3 sample 4 sample 5 sample 6 sample 7 sample 8 sample 9
.059 Geirhos2021powerequalisation-error_consistency v1 [reference] rank 195
.059
0
ceiling
best
median
sample 0 sample 1 sample 2 sample 3 sample 4 sample 5 sample 6 sample 7 sample 8 sample 9
.091 Geirhos2021rotation-error_consistency v1 [reference] rank 169
.091
0
ceiling
best
median
sample 0 sample 1 sample 2 sample 3 sample 4 sample 5 sample 6 sample 7 sample 8 sample 9
.287 Geirhos2021silhouette-error_consistency v1 [reference] rank 179
.287
0
ceiling
best
median
sample 0 sample 1 sample 2 sample 3 sample 4 sample 5 sample 6 sample 7 sample 8 sample 9
.077 Geirhos2021sketch-error_consistency v1 [reference] rank 157
.077
0
ceiling
best
median
sample 0 sample 1 sample 2 sample 3 sample 4 sample 5 sample 6 sample 7 sample 8 sample 9
.160 Geirhos2021stylized-error_consistency v1 [reference] rank 183
.160
0
ceiling
best
median
sample 0 sample 1 sample 2 sample 3 sample 4 sample 5 sample 6 sample 7 sample 8 sample 9
.048 Geirhos2021uniformnoise-error_consistency v1 [reference] rank 202
.048
0
ceiling
best
median
sample 0 sample 1 sample 2 sample 3 sample 4 sample 5 sample 6 sample 7 sample 8 sample 9
.093 Baker2022 rank 149
3 benchmarks
.093
0
ceiling
best
median
.280 Baker2022fragmented-accuracy_delta v1 [reference] rank 113
.280
0
ceiling
best
median
sample 0 sample 1 sample 2 sample 3 sample 4 sample 5 sample 6 sample 7 sample 8 sample 9
.000 Baker2022frankenstein-accuracy_delta v1 [reference] rank 142
.000
0
ceiling
best
median
sample 0 sample 1 sample 2 sample 3 sample 4 sample 5 sample 6 sample 7 sample 8 sample 9
.000 Baker2022inverted-accuracy_delta v1 [reference] rank 54
.000
0
ceiling
best
median
sample 0 sample 1 sample 2 sample 3 sample 4 sample 5 sample 6 sample 7 sample 8 sample 9
.684 Maniquet2024 rank 45
2 benchmarks
.684
0
ceiling
best
median
.737 Maniquet2024-confusion_similarity v1 [reference] rank 42
.737
0
ceiling
best
median
sample 0 sample 1 sample 2 sample 3 sample 4 sample 5 sample 6 sample 7 sample 8 sample 9
.632 Maniquet2024-tasks_consistency v1 [reference] rank 117
.632
0
ceiling
best
median
sample 0 sample 1 sample 2 sample 3 sample 4 sample 5 sample 6 sample 7 sample 8 sample 9
.446 Ferguson2024 [reference] rank 121
14 benchmarks
.446
0
ceiling
best
median
.653 Ferguson2024half-value_delta v1 [reference] rank 77
.653
0
ceiling
best
median
sample 0 sample 1 sample 2 sample 3 sample 4 sample 5 sample 6 sample 7 sample 8 sample 9
.138 Ferguson2024gray_hard-value_delta v1 [reference] rank 183
.138
0
ceiling
best
median
sample 0 sample 1 sample 2 sample 3 sample 4 sample 5 sample 6 sample 7 sample 8 sample 9
1.0 Ferguson2024lle-value_delta v1 [reference] rank 1
1.0
0
ceiling
best
median
sample 0 sample 1 sample 2 sample 3 sample 4 sample 5 sample 6 sample 7 sample 8 sample 9
.137 Ferguson2024juncture-value_delta v1 [reference] rank 102
.137
0
ceiling
best
median
sample 0 sample 1 sample 2 sample 3 sample 4 sample 5 sample 6 sample 7 sample 8 sample 9
.175 Ferguson2024color-value_delta v1 [reference] rank 190
.175
0
ceiling
best
median
sample 0 sample 1 sample 2 sample 3 sample 4 sample 5 sample 6 sample 7 sample 8 sample 9
.204 Ferguson2024round_v-value_delta v1 [reference] rank 179
.204
0
ceiling
best
median
sample 0 sample 1 sample 2 sample 3 sample 4 sample 5 sample 6 sample 7 sample 8 sample 9
.655 Ferguson2024eighth-value_delta v1 [reference] rank 22
.655
0
ceiling
best
median
sample 0 sample 1 sample 2 sample 3 sample 4 sample 5 sample 6 sample 7 sample 8 sample 9
.430 Ferguson2024quarter-value_delta v1 [reference] rank 94
.430
0
ceiling
best
median
sample 0 sample 1 sample 2 sample 3 sample 4 sample 5 sample 6 sample 7 sample 8 sample 9
.516 Ferguson2024convergence-value_delta v1 [reference] rank 81
.516
0
ceiling
best
median
sample 0 sample 1 sample 2 sample 3 sample 4 sample 5 sample 6 sample 7 sample 8 sample 9
.867 Ferguson2024round_f-value_delta v1 [reference] rank 22
.867
0
ceiling
best
median
sample 0 sample 1 sample 2 sample 3 sample 4 sample 5 sample 6 sample 7 sample 8 sample 9
1.0 Ferguson2024llh-value_delta v1 [reference] rank 1
1.0
0
ceiling
best
median
sample 0 sample 1 sample 2 sample 3 sample 4 sample 5 sample 6 sample 7 sample 8 sample 9
.162 Ferguson2024circle_line-value_delta v1 [reference] rank 158
.162
0
ceiling
best
median
sample 0 sample 1 sample 2 sample 3 sample 4 sample 5 sample 6 sample 7 sample 8 sample 9
.050 Ferguson2024gray_easy-value_delta v1 [reference] rank 194
.050
0
ceiling
best
median
sample 0 sample 1 sample 2 sample 3 sample 4 sample 5 sample 6 sample 7 sample 8 sample 9
.254 Ferguson2024tilted_line-value_delta v1 [reference] rank 182
.254
0
ceiling
best
median
sample 0 sample 1 sample 2 sample 3 sample 4 sample 5 sample 6 sample 7 sample 8 sample 9
.089 Hebart2023-match v1 rank 174
.089
0
ceiling
best
median
sample 0 sample 1 sample 2 sample 3 sample 4 sample 5 sample 6 sample 7 sample 8 sample 9
.198 BMD2024 rank 71
4 benchmarks
.198
0
ceiling
best
median
.094 BMD2024.dotted_1Behavioral-accuracy_distance v1 rank 156
.094
0
ceiling
best
median
sample 0 sample 1 sample 2 sample 3 sample 4 sample 5 sample 6 sample 7 sample 8 sample 9
.372 BMD2024.texture_1Behavioral-accuracy_distance v1 rank 21
.372
0
ceiling
best
median
sample 0 sample 1 sample 2 sample 3 sample 4 sample 5 sample 6 sample 7 sample 8 sample 9
.199 BMD2024.texture_2Behavioral-accuracy_distance v1 rank 82
.199
0
ceiling
best
median
sample 0 sample 1 sample 2 sample 3 sample 4 sample 5 sample 6 sample 7 sample 8 sample 9
.126 BMD2024.dotted_2Behavioral-accuracy_distance v1 rank 107
.126
0
ceiling
best
median
sample 0 sample 1 sample 2 sample 3 sample 4 sample 5 sample 6 sample 7 sample 8 sample 9
.211 Coggan2024_behavior-ConditionWiseAccuracySimilarity v1 rank 120
.211
0
ceiling
best
median
sample 0 sample 1 sample 2 sample 3 sample 4 sample 5 sample 6 sample 7 sample 8 sample 9
.149 engineering_vision rank 240
25 benchmarks
.149
0
ceiling
best
median
.509 Geirhos2021-top1 [reference] rank 163
17 benchmarks
.509
0
ceiling
best
median
.931 Geirhos2021colour-top1 v1 [reference] rank 171
.931
0
ceiling
best
median
sample 0 sample 1 sample 2 sample 3 sample 4 sample 5 sample 6 sample 7 sample 8 sample 9
.619 Geirhos2021contrast-top1 v1 [reference] rank 175
.619
0
ceiling
best
median
sample 0 sample 1 sample 2 sample 3 sample 4 sample 5 sample 6 sample 7 sample 8 sample 9
.216 Geirhos2021cueconflict-top1 v1 [reference] rank 115
.216
0
ceiling
best
median
sample 0 sample 1 sample 2 sample 3 sample 4 sample 5 sample 6 sample 7 sample 8 sample 9
.269 Geirhos2021edge-top1 v1 [reference] rank 135
.269
0
ceiling
best
median
sample 0 sample 1 sample 2 sample 3 sample 4 sample 5 sample 6 sample 7 sample 8 sample 9
.470 Geirhos2021eidolonI-top1 v1 [reference] rank 190
.470
0
ceiling
best
median
sample 0 sample 1 sample 2 sample 3 sample 4 sample 5 sample 6 sample 7 sample 8 sample 9
.486 Geirhos2021eidolonII-top1 v1 [reference] rank 166
.486
0
ceiling
best
median
sample 0 sample 1 sample 2 sample 3 sample 4 sample 5 sample 6 sample 7 sample 8 sample 9
.490 Geirhos2021eidolonIII-top1 v1 [reference] rank 166
.490
0
ceiling
best
median
sample 0 sample 1 sample 2 sample 3 sample 4 sample 5 sample 6 sample 7 sample 8 sample 9
.912 Geirhos2021falsecolour-top1 v1 [reference] rank 146
.912
0
ceiling
best
median
sample 0 sample 1 sample 2 sample 3 sample 4 sample 5 sample 6 sample 7 sample 8 sample 9
.336 Geirhos2021highpass-top1 v1 [reference] rank 158
.336
0
ceiling
best
median
sample 0 sample 1 sample 2 sample 3 sample 4 sample 5 sample 6 sample 7 sample 8 sample 9
.344 Geirhos2021lowpass-top1 v1 [reference] rank 201
.344
0
ceiling
best
median
sample 0 sample 1 sample 2 sample 3 sample 4 sample 5 sample 6 sample 7 sample 8 sample 9
.588 Geirhos2021phasescrambling-top1 v1 [reference] rank 141
.588
0
ceiling
best
median
sample 0 sample 1 sample 2 sample 3 sample 4 sample 5 sample 6 sample 7 sample 8 sample 9
.604 Geirhos2021powerequalisation-top1 v1 [reference] rank 179
.604
0
ceiling
best
median
sample 0 sample 1 sample 2 sample 3 sample 4 sample 5 sample 6 sample 7 sample 8 sample 9
.601 Geirhos2021rotation-top1 v1 [reference] rank 178
.601
0
ceiling
best
median
sample 0 sample 1 sample 2 sample 3 sample 4 sample 5 sample 6 sample 7 sample 8 sample 9
.456 Geirhos2021silhouette-top1 v1 [reference] rank 159
.456
0
ceiling
best
median
sample 0 sample 1 sample 2 sample 3 sample 4 sample 5 sample 6 sample 7 sample 8 sample 9
.583 Geirhos2021sketch-top1 v1 [reference] rank 156
.583
0
ceiling
best
median
sample 0 sample 1 sample 2 sample 3 sample 4 sample 5 sample 6 sample 7 sample 8 sample 9
.400 Geirhos2021stylized-top1 v1 [reference] rank 114
.400
0
ceiling
best
median
sample 0 sample 1 sample 2 sample 3 sample 4 sample 5 sample 6 sample 7 sample 8 sample 9
.355 Geirhos2021uniformnoise-top1 v1 [reference] rank 161
.355
0
ceiling
best
median
sample 0 sample 1 sample 2 sample 3 sample 4 sample 5 sample 6 sample 7 sample 8 sample 9
.234 Hermann2020 [reference] rank 132
2 benchmarks
.234
0
ceiling
best
median
.181 Hermann2020cueconflict-shape_match v1 [reference] rank 113
.181
0
ceiling
best
median
sample 0 sample 1 sample 2 sample 3 sample 4 sample 5 sample 6 sample 7 sample 8 sample 9
.287 Hermann2020cueconflict-shape_bias v1 [reference] rank 134
.287
0
ceiling
best
median
sample 0 sample 1 sample 2 sample 3 sample 4 sample 5 sample 6 sample 7 sample 8 sample 9

How to use

from brainscore_vision import load_model
model = load_model("mobilenet_v2_1_0_160")
model.start_task(...)
model.start_recording(...)
model.look_at(...)

Benchmarks bibtex

@inproceedings{santurkar2019computer,
    title={Computer Vision with a Single (Robust) Classifier},
    author={Shibani Santurkar and Dimitris Tsipras and Brandon Tran and Andrew Ilyas and Logan Engstrom and Aleksander Madry},
    booktitle={ArXiv preprint arXiv:1906.09453},
    year={2019}
}
        @article {Marques2021.03.01.433495,
	author = {Marques, Tiago and Schrimpf, Martin and DiCarlo, James J.},
	title = {Multi-scale hierarchical neural network models that bridge from single neurons in the primate primary visual cortex to object recognition behavior},
	elocation-id = {2021.03.01.433495},
	year = {2021},
	doi = {10.1101/2021.03.01.433495},
	publisher = {Cold Spring Harbor Laboratory},
	abstract = {Primate visual object recognition relies on the representations in cortical areas at the top of the ventral stream that are computed by a complex, hierarchical network of neural populations. While recent work has created reasonably accurate image-computable hierarchical neural network models of those neural stages, those models do not yet bridge between the properties of individual neurons and the overall emergent behavior of the ventral stream. One reason we cannot yet do this is that individual artificial neurons in multi-stage models have not been shown to be functionally similar to individual biological neurons. Here, we took an important first step by building and evaluating hundreds of hierarchical neural network models in how well their artificial single neurons approximate macaque primary visual cortical (V1) neurons. We found that single neurons in certain models are surprisingly similar to their biological counterparts and that the distributions of single neuron properties, such as those related to orientation and spatial frequency tuning, approximately match those in macaque V1. Critically, we observed that hierarchical models with V1 stages that better match macaque V1 at the single neuron level are also more aligned with human object recognition behavior. Finally, we show that an optimized classical neuroscientific model of V1 is more functionally similar to primate V1 than all of the tested multi-stage models, suggesting room for further model improvements with tangible payoffs in closer alignment to human behavior. These results provide the first multi-stage, multi-scale models that allow our field to ask precisely how the specific properties of individual V1 neurons relate to recognition behavior.HighlightsImage-computable hierarchical neural network models can be naturally extended to create hierarchical {\textquotedblleft}brain models{\textquotedblright} that allow direct comparison with biological neural networks at multiple scales {\textendash} from single neurons, to population of neurons, to behavior.Single neurons in some of these hierarchical brain models are functionally similar to single neurons in macaque primate visual cortex (V1)Some hierarchical brain models have processing stages in which the entire distribution of artificial neuron properties closely matches the biological distributions of those same properties in macaque V1Hierarchical brain models whose V1 processing stages better match the macaque V1 stage also tend to be more aligned with human object recognition behavior at their output stageCompeting Interest StatementThe authors have declared no competing interest.},
	URL = {https://www.biorxiv.org/content/early/2021/08/13/2021.03.01.433495},
	eprint = {https://www.biorxiv.org/content/early/2021/08/13/2021.03.01.433495.full.pdf},
	journal = {bioRxiv}
}
        @article{Schiller1976,
            author = {Schiller, P. H. and Finlay, B. L. and Volman, S. F.},
            doi = {10.1152/jn.1976.39.6.1352},
            issn = {0022-3077},
            journal = {Journal of neurophysiology},
            number = {6},
            pages = {1334--1351},
            pmid = {825624},
            title = {{Quantitative studies of single-cell properties in monkey striate cortex. III. Spatial Frequency}},
            url = {http://www.ncbi.nlm.nih.gov/pubmed/825624},
            volume = {39},
            year = {1976}
            }
        @article{Freeman2013,
            author = {Freeman, Jeremy and Ziemba, Corey M. and Heeger, David J. and Simoncelli, E. P. and Movshon, J. A.},
            doi = {10.1038/nn.3402},
            issn = {10976256},
            journal = {Nature Neuroscience},
            number = {7},
            pages = {974--981},
            pmid = {23685719},
            publisher = {Nature Publishing Group},
            title = {{A functional and perceptual signature of the second visual area in primates}},
            url = {http://dx.doi.org/10.1038/nn.3402},
            volume = {16},
            year = {2013}
            }
        @article{Cavanaugh2002,
            author = {Cavanaugh, James R. and Bair, Wyeth and Movshon, J. A.},
            doi = {10.1152/jn.00692.2001},
            isbn = {0022-3077 (Print) 0022-3077 (Linking)},
            issn = {0022-3077},
            journal = {Journal of Neurophysiology},
            mendeley-groups = {Benchmark effects/Done,Benchmark effects/*Surround Suppression},
            number = {5},
            pages = {2530--2546},
            pmid = {12424292},
            title = {{Nature and Interaction of Signals From the Receptive Field Center and Surround in Macaque V1 Neurons}},
            url = {http://www.physiology.org/doi/10.1152/jn.00692.2001},
            volume = {88},
            year = {2002}
            }
        @Article{Freeman2013,
                author={Freeman, Jeremy
                and Ziemba, Corey M.
                and Heeger, David J.
                and Simoncelli, Eero P.
                and Movshon, J. Anthony},
                title={A functional and perceptual signature of the second visual area in primates},
                journal={Nature Neuroscience},
                year={2013},
                month={Jul},
                day={01},
                volume={16},
                number={7},
                pages={974-981},
                abstract={The authors examined neuronal responses in V1 and V2 to synthetic texture stimuli that replicate higher-order statistical dependencies found in natural images. V2, but not V1, responded differentially to these textures, in both macaque (single neurons) and human (fMRI). Human detection of naturalistic structure in the same images was predicted by V2 responses, suggesting a role for V2 in representing natural image structure.},
                issn={1546-1726},
                doi={10.1038/nn.3402},
                url={https://doi.org/10.1038/nn.3402}
                }
        @misc{Sanghavi_Jozwik_DiCarlo_2021,
  title={SanghaviJozwik2020},
  url={osf.io/fhy36},
  DOI={10.17605/OSF.IO/FHY36},
  publisher={OSF},
  author={Sanghavi, Sachi and Jozwik, Kamila M and DiCarlo, James J},
  year={2021},
  month={Nov}
}
        @misc{Sanghavi_DiCarlo_2021,
  title={Sanghavi2020},
  url={osf.io/chwdk},
  DOI={10.17605/OSF.IO/CHWDK},
  publisher={OSF},
  author={Sanghavi, Sachi and DiCarlo, James J},
  year={2021},
  month={Nov}
}
        @misc{Sanghavi_Murty_DiCarlo_2021,
  title={SanghaviMurty2020},
  url={osf.io/fchme},
  DOI={10.17605/OSF.IO/FCHME},
  publisher={OSF},
  author={Sanghavi, Sachi and Murty, N A R and DiCarlo, James J},
  year={2021},
  month={Nov}
}
        @article {Majaj13402,
            author = {Majaj, Najib J. and Hong, Ha and Solomon, Ethan A. and DiCarlo, James J.},
            title = {Simple Learned Weighted Sums of Inferior Temporal Neuronal Firing Rates Accurately Predict Human Core Object Recognition Performance},
            volume = {35},
            number = {39},
            pages = {13402--13418},
            year = {2015},
            doi = {10.1523/JNEUROSCI.5181-14.2015},
            publisher = {Society for Neuroscience},
            abstract = {To go beyond qualitative models of the biological substrate of object recognition, we ask: can a single ventral stream neuronal linking hypothesis quantitatively account for core object recognition performance over a broad range of tasks? We measured human performance in 64 object recognition tests using thousands of challenging images that explore shape similarity and identity preserving object variation. We then used multielectrode arrays to measure neuronal population responses to those same images in visual areas V4 and inferior temporal (IT) cortex of monkeys and simulated V1 population responses. We tested leading candidate linking hypotheses and control hypotheses, each postulating how ventral stream neuronal responses underlie object recognition behavior. Specifically, for each hypothesis, we computed the predicted performance on the 64 tests and compared it with the measured pattern of human performance. All tested hypotheses based on low- and mid-level visually evoked activity (pixels, V1, and V4) were very poor predictors of the human behavioral pattern. However, simple learned weighted sums of distributed average IT firing rates exactly predicted the behavioral pattern. More elaborate linking hypotheses relying on IT trial-by-trial correlational structure, finer IT temporal codes, or ones that strictly respect the known spatial substructures of IT ({	extquotedblleft}face patches{	extquotedblright}) did not improve predictive power. Although these results do not reject those more elaborate hypotheses, they suggest a simple, sufficient quantitative model: each object recognition task is learned from the spatially distributed mean firing rates (100 ms) of \~{}60,000 IT neurons and is executed as a simple weighted sum of those firing rates.SIGNIFICANCE STATEMENT We sought to go beyond qualitative models of visual object recognition and determine whether a single neuronal linking hypothesis can quantitatively account for core object recognition behavior. To achieve this, we designed a database of images for evaluating object recognition performance. We used multielectrode arrays to characterize hundreds of neurons in the visual ventral stream of nonhuman primates and measured the object recognition performance of \>100 human observers. Remarkably, we found that simple learned weighted sums of firing rates of neurons in monkey inferior temporal (IT) cortex accurately predicted human performance. Although previous work led us to expect that IT would outperform V4, we were surprised by the quantitative precision with which simple IT-based linking hypotheses accounted for human behavior.},
            issn = {0270-6474},
            URL = {https://www.jneurosci.org/content/35/39/13402},
            eprint = {https://www.jneurosci.org/content/35/39/13402.full.pdf},
            journal = {Journal of Neuroscience}}
        @Article{Kar2019,
                                                    author={Kar, Kohitij
                                                    and Kubilius, Jonas
                                                    and Schmidt, Kailyn
                                                    and Issa, Elias B.
                                                    and DiCarlo, James J.},
                                                    title={Evidence that recurrent circuits are critical to the ventral stream's execution of core object recognition behavior},
                                                    journal={Nature Neuroscience},
                                                    year={2019},
                                                    month={Jun},
                                                    day={01},
                                                    volume={22},
                                                    number={6},
                                                    pages={974-983},
                                                    abstract={Non-recurrent deep convolutional neural networks (CNNs) are currently the best at modeling core object recognition, a behavior that is supported by the densely recurrent primate ventral stream, culminating in the inferior temporal (IT) cortex. If recurrence is critical to this behavior, then primates should outperform feedforward-only deep CNNs for images that require additional recurrent processing beyond the feedforward IT response. Here we first used behavioral methods to discover hundreds of these `challenge' images. Second, using large-scale electrophysiology, we observed that behaviorally sufficient object identity solutions emerged {	extasciitilde}30{	hinspace}ms later in the IT cortex for challenge images compared with primate performance-matched `control' images. Third, these behaviorally critical late-phase IT response patterns were poorly predicted by feedforward deep CNN activations. Notably, very-deep CNNs and shallower recurrent CNNs better predicted these late IT responses, suggesting that there is a functional equivalence between additional nonlinear transformations and recurrence. Beyond arguing that recurrent circuits are critical for rapid object identification, our results provide strong constraints for future recurrent model development.},
                                                    issn={1546-1726},
                                                    doi={10.1038/s41593-019-0392-5},
                                                    url={https://doi.org/10.1038/s41593-019-0392-5}
                                                    }
        @article {Rajalingham240614,
                author = {Rajalingham, Rishi and Issa, Elias B. and Bashivan, Pouya and Kar, Kohitij and Schmidt, Kailyn and DiCarlo, James J.},
                title = {Large-scale, high-resolution comparison of the core visual object recognition behavior of humans, monkeys, and state-of-the-art deep artificial neural networks},
                elocation-id = {240614},
                year = {2018},
                doi = {10.1101/240614},
                publisher = {Cold Spring Harbor Laboratory},
                abstract = {Primates{	extemdash}including humans{	extemdash}can typically recognize objects in visual images at a glance even in the face of naturally occurring identity-preserving image transformations (e.g. changes in viewpoint). A primary neuroscience goal is to uncover neuron-level mechanistic models that quantitatively explain this behavior by predicting primate performance for each and every image. Here, we applied this stringent behavioral prediction test to the leading mechanistic models of primate vision (specifically, deep, convolutional, artificial neural networks; ANNs) by directly comparing their behavioral signatures against those of humans and rhesus macaque monkeys. Using high-throughput data collection systems for human and monkey psychophysics, we collected over one million behavioral trials for 2400 images over 276 binary object discrimination tasks. Consistent with previous work, we observed that state-of-the-art deep, feed-forward convolutional ANNs trained for visual categorization (termed DCNNIC models) accurately predicted primate patterns of object-level confusion. However, when we examined behavioral performance for individual images within each object discrimination task, we found that all tested DCNNIC models were significantly non-predictive of primate performance, and that this prediction failure was not accounted for by simple image attributes, nor rescued by simple model modifications. These results show that current DCNNIC models cannot account for the image-level behavioral patterns of primates, and that new ANN models are needed to more precisely capture the neural mechanisms underlying primate object vision. To this end, large-scale, high-resolution primate behavioral benchmarks{	extemdash}such as those obtained here{	extemdash}could serve as direct guides for discovering such models.SIGNIFICANCE STATEMENT Recently, specific feed-forward deep convolutional artificial neural networks (ANNs) models have dramatically advanced our quantitative understanding of the neural mechanisms underlying primate core object recognition. In this work, we tested the limits of those ANNs by systematically comparing the behavioral responses of these models with the behavioral responses of humans and monkeys, at the resolution of individual images. Using these high-resolution metrics, we found that all tested ANN models significantly diverged from primate behavior. Going forward, these high-resolution, large-scale primate behavioral benchmarks could serve as direct guides for discovering better ANN models of the primate visual system.},
                URL = {https://www.biorxiv.org/content/early/2018/02/12/240614},
                eprint = {https://www.biorxiv.org/content/early/2018/02/12/240614.full.pdf},
                journal = {bioRxiv}
            }
        @article{geirhos2021partial,
              title={Partial success in closing the gap between human and machine vision},
              author={Geirhos, Robert and Narayanappa, Kantharaju and Mitzkus, Benjamin and Thieringer, Tizian and Bethge, Matthias and Wichmann, Felix A and Brendel, Wieland},
              journal={Advances in Neural Information Processing Systems},
              volume={34},
              year={2021},
              url={https://openreview.net/forum?id=QkljT4mrfs}
        }
        @article{BAKER2022104913,
                title = {Deep learning models fail to capture the configural nature of human shape perception},
                journal = {iScience},
                volume = {25},
                number = {9},
                pages = {104913},
                year = {2022},
                issn = {2589-0042},
                doi = {https://doi.org/10.1016/j.isci.2022.104913},
                url = {https://www.sciencedirect.com/science/article/pii/S2589004222011853},
                author = {Nicholas Baker and James H. Elder},
                keywords = {Biological sciences, Neuroscience, Sensory neuroscience},
                abstract = {Summary
                A hallmark of human object perception is sensitivity to the holistic configuration of the local shape features of an object. Deep convolutional neural networks (DCNNs) are currently the dominant models for object recognition processing in the visual cortex, but do they capture this configural sensitivity? To answer this question, we employed a dataset of animal silhouettes and created a variant of this dataset that disrupts the configuration of each object while preserving local features. While human performance was impacted by this manipulation, DCNN performance was not, indicating insensitivity to object configuration. Modifications to training and architecture to make networks more brain-like did not lead to configural processing, and none of the networks were able to accurately predict trial-by-trial human object judgements. We speculate that to match human configural sensitivity, networks must be trained to solve a broader range of object tasks beyond category recognition.}
        }
        @article {Maniquet2024.04.02.587669,
	author = {Maniquet, Tim and de Beeck, Hans Op and Costantino, Andrea Ivan},
	title = {Recurrent issues with deep neural network models of visual recognition},
	elocation-id = {2024.04.02.587669},
	year = {2024},
	doi = {10.1101/2024.04.02.587669},
	publisher = {Cold Spring Harbor Laboratory},
	URL = {https://www.biorxiv.org/content/early/2024/04/10/2024.04.02.587669},
	eprint = {https://www.biorxiv.org/content/early/2024/04/10/2024.04.02.587669.full.pdf},
	journal = {bioRxiv}
}
        @misc{ferguson_ngo_lee_dicarlo_schrimpf_2024,
         title={How Well is Visual Search Asymmetry predicted by a Binary-Choice, Rapid, Accuracy-based Visual-search, Oddball-detection (BRAVO) task?},
         url={osf.io/5ba3n},
         DOI={10.17605/OSF.IO/5BA3N},
         publisher={OSF},
         author={Ferguson, Michael E, Jr and Ngo, Jerry and Lee, Michael and DiCarlo, James and Schrimpf, Martin},
         year={2024},
         month={Jun}
}
        @article{hermann2020origins,
              title={The origins and prevalence of texture bias in convolutional neural networks},
              author={Hermann, Katherine and Chen, Ting and Kornblith, Simon},
              journal={Advances in Neural Information Processing Systems},
              volume={33},
              pages={19000--19015},
              year={2020},
              url={https://proceedings.neurips.cc/paper/2020/hash/db5f9f42a7157abe65bb145000b5871a-Abstract.html}
        }
        

Layer Commitment

Region Layer
V1 MobilenetV2_expanded_conv_6_expand_Conv2D
V2 MobilenetV2_expanded_conv_8_expand_Conv2D
V4 MobilenetV2_expanded_conv_7_expand_Conv2D
IT MobilenetV2_expanded_conv_14_expand_Conv2D

Visual Angle

None degrees