Scores on benchmarks

Model rank shown below is with respect to all public models.
.130 average_vision rank 363
81 benchmarks
.130
0
ceiling
best
median
.259 behavior_vision rank 150
43 benchmarks
.259
0
ceiling
best
median
.214 Geirhos2021-error_consistency [reference] rank 125
17 benchmarks
.214
0
ceiling
best
median
.554 Geirhos2021contrast-error_consistency v1 [reference] rank 29
.554
0
ceiling
best
median
sample 0 sample 1 sample 2 sample 3 sample 4 sample 5 sample 6 sample 7 sample 8 sample 9
.316 Geirhos2021cueconflict-error_consistency v1 [reference] rank 52
.316
0
ceiling
best
median
sample 0 sample 1 sample 2 sample 3 sample 4 sample 5 sample 6 sample 7 sample 8 sample 9
.132 Geirhos2021edge-error_consistency v1 [reference] rank 65
.132
0
ceiling
best
median
sample 0 sample 1 sample 2 sample 3 sample 4 sample 5 sample 6 sample 7 sample 8 sample 9
.445 Geirhos2021eidolonII-error_consistency v1 [reference] rank 89
.445
0
ceiling
best
median
sample 0 sample 1 sample 2 sample 3 sample 4 sample 5 sample 6 sample 7 sample 8 sample 9
.333 Geirhos2021eidolonIII-error_consistency v1 [reference] rank 112
.333
0
ceiling
best
median
sample 0 sample 1 sample 2 sample 3 sample 4 sample 5 sample 6 sample 7 sample 8 sample 9
.392 Geirhos2021falsecolour-error_consistency v1 [reference] rank 88
.392
0
ceiling
best
median
sample 0 sample 1 sample 2 sample 3 sample 4 sample 5 sample 6 sample 7 sample 8 sample 9
.150 Geirhos2021highpass-error_consistency v1 [reference] rank 49
.150
0
ceiling
best
median
sample 0 sample 1 sample 2 sample 3 sample 4 sample 5 sample 6 sample 7 sample 8 sample 9
.175 Geirhos2021lowpass-error_consistency v1 [reference] rank 112
.175
0
ceiling
best
median
sample 0 sample 1 sample 2 sample 3 sample 4 sample 5 sample 6 sample 7 sample 8 sample 9
.162 Geirhos2021phasescrambling-error_consistency v1 [reference] rank 92
.162
0
ceiling
best
median
sample 0 sample 1 sample 2 sample 3 sample 4 sample 5 sample 6 sample 7 sample 8 sample 9
.133 Geirhos2021powerequalisation-error_consistency v1 [reference] rank 107
.133
0
ceiling
best
median
sample 0 sample 1 sample 2 sample 3 sample 4 sample 5 sample 6 sample 7 sample 8 sample 9
.175 Geirhos2021rotation-error_consistency v1 [reference] rank 93
.175
0
ceiling
best
median
sample 0 sample 1 sample 2 sample 3 sample 4 sample 5 sample 6 sample 7 sample 8 sample 9
.674 Geirhos2021silhouette-error_consistency v1 [reference] rank 58
.674
0
ceiling
best
median
sample 0 sample 1 sample 2 sample 3 sample 4 sample 5 sample 6 sample 7 sample 8 sample 9
.397 Baker2022 rank 77
3 benchmarks
.397
0
ceiling
best
median
.735 Baker2022fragmented-accuracy_delta v1 [reference] rank 52
.735
0
ceiling
best
median
sample 0 sample 1 sample 2 sample 3 sample 4 sample 5 sample 6 sample 7 sample 8 sample 9
.457 Baker2022frankenstein-accuracy_delta v1 [reference] rank 86
.457
0
ceiling
best
median
sample 0 sample 1 sample 2 sample 3 sample 4 sample 5 sample 6 sample 7 sample 8 sample 9
.000 Baker2022inverted-accuracy_delta v1 [reference] rank 54
.000
0
ceiling
best
median
sample 0 sample 1 sample 2 sample 3 sample 4 sample 5 sample 6 sample 7 sample 8 sample 9
.425 Maniquet2024 rank 140
2 benchmarks
.425
0
ceiling
best
median
.381 Maniquet2024-confusion_similarity v1 [reference] rank 123
.381
0
ceiling
best
median
sample 0 sample 1 sample 2 sample 3 sample 4 sample 5 sample 6 sample 7 sample 8 sample 9
.470 Maniquet2024-tasks_consistency v1 [reference] rank 162
.470
0
ceiling
best
median
sample 0 sample 1 sample 2 sample 3 sample 4 sample 5 sample 6 sample 7 sample 8 sample 9
.459 Ferguson2024 [reference] rank 106
14 benchmarks
.459
0
ceiling
best
median
.571 Ferguson2024half-value_delta v1 [reference] rank 91
.571
0
ceiling
best
median
sample 0 sample 1 sample 2 sample 3 sample 4 sample 5 sample 6 sample 7 sample 8 sample 9
1.0 Ferguson2024gray_hard-value_delta v1 [reference] rank 1
1.0
0
ceiling
best
median
sample 0 sample 1 sample 2 sample 3 sample 4 sample 5 sample 6 sample 7 sample 8 sample 9
.092 Ferguson2024lle-value_delta v1 [reference] rank 187
.092
0
ceiling
best
median
sample 0 sample 1 sample 2 sample 3 sample 4 sample 5 sample 6 sample 7 sample 8 sample 9
.056 Ferguson2024juncture-value_delta v1 [reference] rank 146
.056
0
ceiling
best
median
sample 0 sample 1 sample 2 sample 3 sample 4 sample 5 sample 6 sample 7 sample 8 sample 9
.533 Ferguson2024color-value_delta v1 [reference] rank 128
.533
0
ceiling
best
median
sample 0 sample 1 sample 2 sample 3 sample 4 sample 5 sample 6 sample 7 sample 8 sample 9
.124 Ferguson2024round_v-value_delta v1 [reference] rank 192
.124
0
ceiling
best
median
sample 0 sample 1 sample 2 sample 3 sample 4 sample 5 sample 6 sample 7 sample 8 sample 9
.148 Ferguson2024eighth-value_delta v1 [reference] rank 89
.148
0
ceiling
best
median
sample 0 sample 1 sample 2 sample 3 sample 4 sample 5 sample 6 sample 7 sample 8 sample 9
.127 Ferguson2024quarter-value_delta v1 [reference] rank 181
.127
0
ceiling
best
median
sample 0 sample 1 sample 2 sample 3 sample 4 sample 5 sample 6 sample 7 sample 8 sample 9
1.0 Ferguson2024convergence-value_delta v1 [reference] rank 1
1.0
0
ceiling
best
median
sample 0 sample 1 sample 2 sample 3 sample 4 sample 5 sample 6 sample 7 sample 8 sample 9
.383 Ferguson2024round_f-value_delta v1 [reference] rank 95
.383
0
ceiling
best
median
sample 0 sample 1 sample 2 sample 3 sample 4 sample 5 sample 6 sample 7 sample 8 sample 9
.951 Ferguson2024llh-value_delta v1 [reference] rank 33
.951
0
ceiling
best
median
sample 0 sample 1 sample 2 sample 3 sample 4 sample 5 sample 6 sample 7 sample 8 sample 9
.845 Ferguson2024circle_line-value_delta v1 [reference] rank 23
.845
0
ceiling
best
median
sample 0 sample 1 sample 2 sample 3 sample 4 sample 5 sample 6 sample 7 sample 8 sample 9
.426 Ferguson2024gray_easy-value_delta v1 [reference] rank 88
.426
0
ceiling
best
median
sample 0 sample 1 sample 2 sample 3 sample 4 sample 5 sample 6 sample 7 sample 8 sample 9
.171 Ferguson2024tilted_line-value_delta v1 [reference] rank 196
.171
0
ceiling
best
median
sample 0 sample 1 sample 2 sample 3 sample 4 sample 5 sample 6 sample 7 sample 8 sample 9
.351 Hebart2023-match v1 rank 49
.351
0
ceiling
best
median
sample 0 sample 1 sample 2 sample 3 sample 4 sample 5 sample 6 sample 7 sample 8 sample 9
.128 BMD2024 rank 135
4 benchmarks
.128
0
ceiling
best
median
.146 BMD2024.dotted_1Behavioral-accuracy_distance v1 rank 96
.146
0
ceiling
best
median
sample 0 sample 1 sample 2 sample 3 sample 4 sample 5 sample 6 sample 7 sample 8 sample 9
.114 BMD2024.texture_1Behavioral-accuracy_distance v1 rank 139
.114
0
ceiling
best
median
sample 0 sample 1 sample 2 sample 3 sample 4 sample 5 sample 6 sample 7 sample 8 sample 9
.105 BMD2024.texture_2Behavioral-accuracy_distance v1 rank 144
.105
0
ceiling
best
median
sample 0 sample 1 sample 2 sample 3 sample 4 sample 5 sample 6 sample 7 sample 8 sample 9
.149 BMD2024.dotted_2Behavioral-accuracy_distance v1 rank 86
.149
0
ceiling
best
median
sample 0 sample 1 sample 2 sample 3 sample 4 sample 5 sample 6 sample 7 sample 8 sample 9
.099 Coggan2024_behavior-ConditionWiseAccuracySimilarity v1 rank 158
.099
0
ceiling
best
median
sample 0 sample 1 sample 2 sample 3 sample 4 sample 5 sample 6 sample 7 sample 8 sample 9
.320 engineering_vision rank 170
25 benchmarks
.320
0
ceiling
best
median
.640 ImageNet-top1 v1 [reference] rank 168
.640
0
ceiling
best
median
sample 0 sample 1 sample 2 sample 3 sample 4 sample 5 sample 6 sample 7 sample 8 sample 9
.295 ImageNet-C-top1 [reference] rank 131
4 benchmarks
.295
0
ceiling
best
median
.298 ImageNet-C-blur-top1 v2 [reference] rank 108
.298
0
ceiling
best
median
sample 0 sample 1 sample 2 sample 3 sample 4 sample 5 sample 6 sample 7 sample 8 sample 9
.379 ImageNet-C-weather-top1 v2 [reference] rank 110
.379
0
ceiling
best
median
sample 0 sample 1 sample 2 sample 3 sample 4 sample 5 sample 6 sample 7 sample 8 sample 9
.502 ImageNet-C-digital-top1 v2 [reference] rank 73
.502
0
ceiling
best
median
sample 0 sample 1 sample 2 sample 3 sample 4 sample 5 sample 6 sample 7 sample 8 sample 9
.392 Geirhos2021-top1 [reference] rank 238
17 benchmarks
.392
0
ceiling
best
median
.219 Geirhos2021cueconflict-top1 v1 [reference] rank 111
.219
0
ceiling
best
median
sample 0 sample 1 sample 2 sample 3 sample 4 sample 5 sample 6 sample 7 sample 8 sample 9
.250 Geirhos2021edge-top1 v1 [reference] rank 154
.250
0
ceiling
best
median
sample 0 sample 1 sample 2 sample 3 sample 4 sample 5 sample 6 sample 7 sample 8 sample 9
.412 Geirhos2021eidolonI-top1 v1 [reference] rank 239
.412
0
ceiling
best
median
sample 0 sample 1 sample 2 sample 3 sample 4 sample 5 sample 6 sample 7 sample 8 sample 9
.425 Geirhos2021eidolonII-top1 v1 [reference] rank 231
.425
0
ceiling
best
median
sample 0 sample 1 sample 2 sample 3 sample 4 sample 5 sample 6 sample 7 sample 8 sample 9
.417 Geirhos2021eidolonIII-top1 v1 [reference] rank 229
.417
0
ceiling
best
median
sample 0 sample 1 sample 2 sample 3 sample 4 sample 5 sample 6 sample 7 sample 8 sample 9
.905 Geirhos2021falsecolour-top1 v1 [reference] rank 155
.905
0
ceiling
best
median
sample 0 sample 1 sample 2 sample 3 sample 4 sample 5 sample 6 sample 7 sample 8 sample 9
.530 Geirhos2021highpass-top1 v1 [reference] rank 55
.530
0
ceiling
best
median
sample 0 sample 1 sample 2 sample 3 sample 4 sample 5 sample 6 sample 7 sample 8 sample 9
.481 Geirhos2021phasescrambling-top1 v1 [reference] rank 223
.481
0
ceiling
best
median
sample 0 sample 1 sample 2 sample 3 sample 4 sample 5 sample 6 sample 7 sample 8 sample 9
.657 Geirhos2021powerequalisation-top1 v1 [reference] rank 143
.657
0
ceiling
best
median
sample 0 sample 1 sample 2 sample 3 sample 4 sample 5 sample 6 sample 7 sample 8 sample 9
.561 Geirhos2021rotation-top1 v1 [reference] rank 195
.561
0
ceiling
best
median
sample 0 sample 1 sample 2 sample 3 sample 4 sample 5 sample 6 sample 7 sample 8 sample 9
.350 Geirhos2021silhouette-top1 v1 [reference] rank 220
.350
0
ceiling
best
median
sample 0 sample 1 sample 2 sample 3 sample 4 sample 5 sample 6 sample 7 sample 8 sample 9
.502 Geirhos2021sketch-top1 v1 [reference] rank 207
.502
0
ceiling
best
median
sample 0 sample 1 sample 2 sample 3 sample 4 sample 5 sample 6 sample 7 sample 8 sample 9
.338 Geirhos2021stylized-top1 v1 [reference] rank 198
.338
0
ceiling
best
median
sample 0 sample 1 sample 2 sample 3 sample 4 sample 5 sample 6 sample 7 sample 8 sample 9
.621 Geirhos2021uniformnoise-top1 v1 [reference] rank 46
.621
0
ceiling
best
median
sample 0 sample 1 sample 2 sample 3 sample 4 sample 5 sample 6 sample 7 sample 8 sample 9
.274 Hermann2020 [reference] rank 98
2 benchmarks
.274
0
ceiling
best
median
.193 Hermann2020cueconflict-shape_match v1 [reference] rank 93
.193
0
ceiling
best
median
sample 0 sample 1 sample 2 sample 3 sample 4 sample 5 sample 6 sample 7 sample 8 sample 9
.355 Hermann2020cueconflict-shape_bias v1 [reference] rank 90
.355
0
ceiling
best
median
sample 0 sample 1 sample 2 sample 3 sample 4 sample 5 sample 6 sample 7 sample 8 sample 9

How to use

from brainscore_vision import load_model
model = load_model("pnasnet_large_pytorch")
model.start_task(...)
model.start_recording(...)
model.look_at(...)

Benchmarks bibtex

@article{geirhos2021partial,
              title={Partial success in closing the gap between human and machine vision},
              author={Geirhos, Robert and Narayanappa, Kantharaju and Mitzkus, Benjamin and Thieringer, Tizian and Bethge, Matthias and Wichmann, Felix A and Brendel, Wieland},
              journal={Advances in Neural Information Processing Systems},
              volume={34},
              year={2021},
              url={https://openreview.net/forum?id=QkljT4mrfs}
        }
        @article{BAKER2022104913,
                title = {Deep learning models fail to capture the configural nature of human shape perception},
                journal = {iScience},
                volume = {25},
                number = {9},
                pages = {104913},
                year = {2022},
                issn = {2589-0042},
                doi = {https://doi.org/10.1016/j.isci.2022.104913},
                url = {https://www.sciencedirect.com/science/article/pii/S2589004222011853},
                author = {Nicholas Baker and James H. Elder},
                keywords = {Biological sciences, Neuroscience, Sensory neuroscience},
                abstract = {Summary
                A hallmark of human object perception is sensitivity to the holistic configuration of the local shape features of an object. Deep convolutional neural networks (DCNNs) are currently the dominant models for object recognition processing in the visual cortex, but do they capture this configural sensitivity? To answer this question, we employed a dataset of animal silhouettes and created a variant of this dataset that disrupts the configuration of each object while preserving local features. While human performance was impacted by this manipulation, DCNN performance was not, indicating insensitivity to object configuration. Modifications to training and architecture to make networks more brain-like did not lead to configural processing, and none of the networks were able to accurately predict trial-by-trial human object judgements. We speculate that to match human configural sensitivity, networks must be trained to solve a broader range of object tasks beyond category recognition.}
        }
        @article {Maniquet2024.04.02.587669,
	author = {Maniquet, Tim and de Beeck, Hans Op and Costantino, Andrea Ivan},
	title = {Recurrent issues with deep neural network models of visual recognition},
	elocation-id = {2024.04.02.587669},
	year = {2024},
	doi = {10.1101/2024.04.02.587669},
	publisher = {Cold Spring Harbor Laboratory},
	URL = {https://www.biorxiv.org/content/early/2024/04/10/2024.04.02.587669},
	eprint = {https://www.biorxiv.org/content/early/2024/04/10/2024.04.02.587669.full.pdf},
	journal = {bioRxiv}
}
        @misc{ferguson_ngo_lee_dicarlo_schrimpf_2024,
         title={How Well is Visual Search Asymmetry predicted by a Binary-Choice, Rapid, Accuracy-based Visual-search, Oddball-detection (BRAVO) task?},
         url={osf.io/5ba3n},
         DOI={10.17605/OSF.IO/5BA3N},
         publisher={OSF},
         author={Ferguson, Michael E, Jr and Ngo, Jerry and Lee, Michael and DiCarlo, James and Schrimpf, Martin},
         year={2024},
         month={Jun}
}
        @INPROCEEDINGS{5206848,  
                                                author={J. {Deng} and W. {Dong} and R. {Socher} and L. {Li} and  {Kai Li} and  {Li Fei-Fei}},  
                                                booktitle={2009 IEEE Conference on Computer Vision and Pattern Recognition},   
                                                title={ImageNet: A large-scale hierarchical image database},   
                                                year={2009},  
                                                volume={},  
                                                number={},  
                                                pages={248-255},
                                            }
        @ARTICLE{Hendrycks2019-di,
   title         = "Benchmarking Neural Network Robustness to Common Corruptions
                    and Perturbations",
   author        = "Hendrycks, Dan and Dietterich, Thomas",
   abstract      = "In this paper we establish rigorous benchmarks for image
                    classifier robustness. Our first benchmark, ImageNet-C,
                    standardizes and expands the corruption robustness topic,
                    while showing which classifiers are preferable in
                    safety-critical applications. Then we propose a new dataset
                    called ImageNet-P which enables researchers to benchmark a
                    classifier's robustness to common perturbations. Unlike
                    recent robustness research, this benchmark evaluates
                    performance on common corruptions and perturbations not
                    worst-case adversarial perturbations. We find that there are
                    negligible changes in relative corruption robustness from
                    AlexNet classifiers to ResNet classifiers. Afterward we
                    discover ways to enhance corruption and perturbation
                    robustness. We even find that a bypassed adversarial defense
                    provides substantial common perturbation robustness.
                    Together our benchmarks may aid future work toward networks
                    that robustly generalize.",
   month         =  mar,
   year          =  2019,
   archivePrefix = "arXiv",
   primaryClass  = "cs.LG",
   eprint        = "1903.12261",
   url           = "https://arxiv.org/abs/1903.12261"
}
        @article{hermann2020origins,
              title={The origins and prevalence of texture bias in convolutional neural networks},
              author={Hermann, Katherine and Chen, Ting and Kornblith, Simon},
              journal={Advances in Neural Information Processing Systems},
              volume={33},
              pages={19000--19015},
              year={2020},
              url={https://proceedings.neurips.cc/paper/2020/hash/db5f9f42a7157abe65bb145000b5871a-Abstract.html}
        }
        

Layer Commitment

No layer commitments found for this model. Older submissions might not have stored this information but will be updated when evaluated on new benchmarks.

Visual Angle

None degrees