Scores on benchmarks

Model rank shown below is with respect to all public models.
.217 average_vision rank 186
81 benchmarks
.217
0
ceiling
best
median
.011 neural_vision rank 434
38 benchmarks
.011
0
ceiling
best
median
.046 V1 rank 429
24 benchmarks
.046
0
ceiling
best
median
.005 Coggan2024_fMRI.V1-rdm v1 rank 155
.005
0
ceiling
best
median
sample 0 sample 1 sample 2 sample 3 sample 4 sample 5 sample 6 sample 7 sample 8 sample 9
.133 Marques2020 [reference] rank 342
22 benchmarks
.133
0
ceiling
best
median
.246 V1-orientation rank 342
7 benchmarks
.246
0
ceiling
best
median
.795 Marques2020_Ringach2002-or_selective v1 rank 293
.795
0
ceiling
best
median
sample 0 sample 1 sample 2 sample 3 sample 4 sample 5 sample 6 sample 7 sample 8 sample 9
.930 Marques2020_DeValois1982-pref_or v1 rank 206
.930
0
ceiling
best
median
sample 0 sample 1 sample 2 sample 3 sample 4 sample 5 sample 6 sample 7 sample 8 sample 9
.307 V1-response_selectivity rank 338
4 benchmarks
.307
0
ceiling
best
median
.906 Marques2020_Ringach2002-modulation_ratio v1 rank 1
.906
0
ceiling
best
median
sample 0 sample 1 sample 2 sample 3 sample 4 sample 5 sample 6 sample 7 sample 8 sample 9
.323 Marques2020_FreemanZiemba2013-texture_variance_ratio v1 [reference] rank 349
.323
0
ceiling
best
median
sample 0 sample 1 sample 2 sample 3 sample 4 sample 5 sample 6 sample 7 sample 8 sample 9
.082 V1-receptive_field_size rank 332
2 benchmarks
.082
0
ceiling
best
median
.163 Marques2020_Cavanaugh2002-grating_summation_field v1 [reference] rank 321
.163
0
ceiling
best
median
sample 0 sample 1 sample 2 sample 3 sample 4 sample 5 sample 6 sample 7 sample 8 sample 9
.293 V1-response_magnitude rank 341
3 benchmarks
.293
0
ceiling
best
median
.879 Marques2020_FreemanZiemba2013-max_noise v1 [reference] rank 74
.879
0
ceiling
best
median
sample 0 sample 1 sample 2 sample 3 sample 4 sample 5 sample 6 sample 7 sample 8 sample 9
.423 behavior_vision rank 46
43 benchmarks
.423
0
ceiling
best
median
.522 Rajalingham2018-i2n v2 [reference] rank 108
.522
0
ceiling
best
median
match-to-sample task
sample 0 sample 1 sample 2 sample 3 sample 4 sample 5 sample 6 sample 7 sample 8 sample 9
.191 Geirhos2021-error_consistency [reference] rank 143
17 benchmarks
.191
0
ceiling
best
median
.239 Geirhos2021colour-error_consistency v1 [reference] rank 174
.239
0
ceiling
best
median
sample 0 sample 1 sample 2 sample 3 sample 4 sample 5 sample 6 sample 7 sample 8 sample 9
.125 Geirhos2021contrast-error_consistency v1 [reference] rank 162
.125
0
ceiling
best
median
sample 0 sample 1 sample 2 sample 3 sample 4 sample 5 sample 6 sample 7 sample 8 sample 9
.132 Geirhos2021cueconflict-error_consistency v1 [reference] rank 206
.132
0
ceiling
best
median
sample 0 sample 1 sample 2 sample 3 sample 4 sample 5 sample 6 sample 7 sample 8 sample 9
.084 Geirhos2021edge-error_consistency v1 [reference] rank 132
.084
0
ceiling
best
median
sample 0 sample 1 sample 2 sample 3 sample 4 sample 5 sample 6 sample 7 sample 8 sample 9
.487 Geirhos2021eidolonI-error_consistency v1 [reference] rank 67
.487
0
ceiling
best
median
sample 0 sample 1 sample 2 sample 3 sample 4 sample 5 sample 6 sample 7 sample 8 sample 9
.325 Geirhos2021eidolonII-error_consistency v1 [reference] rank 133
.325
0
ceiling
best
median
sample 0 sample 1 sample 2 sample 3 sample 4 sample 5 sample 6 sample 7 sample 8 sample 9
.302 Geirhos2021eidolonIII-error_consistency v1 [reference] rank 129
.302
0
ceiling
best
median
sample 0 sample 1 sample 2 sample 3 sample 4 sample 5 sample 6 sample 7 sample 8 sample 9
.226 Geirhos2021falsecolour-error_consistency v1 [reference] rank 160
.226
0
ceiling
best
median
sample 0 sample 1 sample 2 sample 3 sample 4 sample 5 sample 6 sample 7 sample 8 sample 9
.043 Geirhos2021highpass-error_consistency v1 [reference] rank 188
.043
0
ceiling
best
median
sample 0 sample 1 sample 2 sample 3 sample 4 sample 5 sample 6 sample 7 sample 8 sample 9
.126 Geirhos2021lowpass-error_consistency v1 [reference] rank 149
.126
0
ceiling
best
median
sample 0 sample 1 sample 2 sample 3 sample 4 sample 5 sample 6 sample 7 sample 8 sample 9
.084 Geirhos2021phasescrambling-error_consistency v1 [reference] rank 163
.084
0
ceiling
best
median
sample 0 sample 1 sample 2 sample 3 sample 4 sample 5 sample 6 sample 7 sample 8 sample 9
.083 Geirhos2021powerequalisation-error_consistency v1 [reference] rank 167
.083
0
ceiling
best
median
sample 0 sample 1 sample 2 sample 3 sample 4 sample 5 sample 6 sample 7 sample 8 sample 9
.080 Geirhos2021rotation-error_consistency v1 [reference] rank 185
.080
0
ceiling
best
median
sample 0 sample 1 sample 2 sample 3 sample 4 sample 5 sample 6 sample 7 sample 8 sample 9
.520 Geirhos2021silhouette-error_consistency v1 [reference] rank 100
.520
0
ceiling
best
median
sample 0 sample 1 sample 2 sample 3 sample 4 sample 5 sample 6 sample 7 sample 8 sample 9
.068 Geirhos2021sketch-error_consistency v1 [reference] rank 169
.068
0
ceiling
best
median
sample 0 sample 1 sample 2 sample 3 sample 4 sample 5 sample 6 sample 7 sample 8 sample 9
.184 Geirhos2021stylized-error_consistency v1 [reference] rank 175
.184
0
ceiling
best
median
sample 0 sample 1 sample 2 sample 3 sample 4 sample 5 sample 6 sample 7 sample 8 sample 9
.144 Geirhos2021uniformnoise-error_consistency v1 [reference] rank 120
.144
0
ceiling
best
median
sample 0 sample 1 sample 2 sample 3 sample 4 sample 5 sample 6 sample 7 sample 8 sample 9
.445 Baker2022 rank 64
3 benchmarks
.445
0
ceiling
best
median
.799 Baker2022fragmented-accuracy_delta v1 [reference] rank 42
.799
0
ceiling
best
median
sample 0 sample 1 sample 2 sample 3 sample 4 sample 5 sample 6 sample 7 sample 8 sample 9
.536 Baker2022frankenstein-accuracy_delta v1 [reference] rank 72
.536
0
ceiling
best
median
sample 0 sample 1 sample 2 sample 3 sample 4 sample 5 sample 6 sample 7 sample 8 sample 9
.000 Baker2022inverted-accuracy_delta v1 [reference] rank 54
.000
0
ceiling
best
median
sample 0 sample 1 sample 2 sample 3 sample 4 sample 5 sample 6 sample 7 sample 8 sample 9
.736 Maniquet2024 rank 14
2 benchmarks
.736
0
ceiling
best
median
.793 Maniquet2024-confusion_similarity v1 [reference] rank 28
.793
0
ceiling
best
median
sample 0 sample 1 sample 2 sample 3 sample 4 sample 5 sample 6 sample 7 sample 8 sample 9
.679 Maniquet2024-tasks_consistency v1 [reference] rank 48
.679
0
ceiling
best
median
sample 0 sample 1 sample 2 sample 3 sample 4 sample 5 sample 6 sample 7 sample 8 sample 9
.520 Ferguson2024 [reference] rank 54
14 benchmarks
.520
0
ceiling
best
median
.942 Ferguson2024half-value_delta v1 [reference] rank 29
.942
0
ceiling
best
median
sample 0 sample 1 sample 2 sample 3 sample 4 sample 5 sample 6 sample 7 sample 8 sample 9
.167 Ferguson2024gray_hard-value_delta v1 [reference] rank 172
.167
0
ceiling
best
median
sample 0 sample 1 sample 2 sample 3 sample 4 sample 5 sample 6 sample 7 sample 8 sample 9
.305 Ferguson2024lle-value_delta v1 [reference] rank 136
.305
0
ceiling
best
median
sample 0 sample 1 sample 2 sample 3 sample 4 sample 5 sample 6 sample 7 sample 8 sample 9
.706 Ferguson2024juncture-value_delta v1 [reference] rank 25
.706
0
ceiling
best
median
sample 0 sample 1 sample 2 sample 3 sample 4 sample 5 sample 6 sample 7 sample 8 sample 9
.650 Ferguson2024color-value_delta v1 [reference] rank 111
.650
0
ceiling
best
median
sample 0 sample 1 sample 2 sample 3 sample 4 sample 5 sample 6 sample 7 sample 8 sample 9
.230 Ferguson2024round_v-value_delta v1 [reference] rank 165
.230
0
ceiling
best
median
sample 0 sample 1 sample 2 sample 3 sample 4 sample 5 sample 6 sample 7 sample 8 sample 9
.220 Ferguson2024eighth-value_delta v1 [reference] rank 74
.220
0
ceiling
best
median
sample 0 sample 1 sample 2 sample 3 sample 4 sample 5 sample 6 sample 7 sample 8 sample 9
.095 Ferguson2024quarter-value_delta v1 [reference] rank 191
.095
0
ceiling
best
median
sample 0 sample 1 sample 2 sample 3 sample 4 sample 5 sample 6 sample 7 sample 8 sample 9
.627 Ferguson2024convergence-value_delta v1 [reference] rank 52
.627
0
ceiling
best
median
sample 0 sample 1 sample 2 sample 3 sample 4 sample 5 sample 6 sample 7 sample 8 sample 9
.255 Ferguson2024round_f-value_delta v1 [reference] rank 119
.255
0
ceiling
best
median
sample 0 sample 1 sample 2 sample 3 sample 4 sample 5 sample 6 sample 7 sample 8 sample 9
.951 Ferguson2024llh-value_delta v1 [reference] rank 33
.951
0
ceiling
best
median
sample 0 sample 1 sample 2 sample 3 sample 4 sample 5 sample 6 sample 7 sample 8 sample 9
.845 Ferguson2024circle_line-value_delta v1 [reference] rank 23
.845
0
ceiling
best
median
sample 0 sample 1 sample 2 sample 3 sample 4 sample 5 sample 6 sample 7 sample 8 sample 9
.288 Ferguson2024gray_easy-value_delta v1 [reference] rank 108
.288
0
ceiling
best
median
sample 0 sample 1 sample 2 sample 3 sample 4 sample 5 sample 6 sample 7 sample 8 sample 9
1.0 Ferguson2024tilted_line-value_delta v1 [reference] rank 1
1.0
0
ceiling
best
median
sample 0 sample 1 sample 2 sample 3 sample 4 sample 5 sample 6 sample 7 sample 8 sample 9
.490 Hebart2023-match v1 rank 6
.490
0
ceiling
best
median
sample 0 sample 1 sample 2 sample 3 sample 4 sample 5 sample 6 sample 7 sample 8 sample 9
.162 BMD2024 rank 112
4 benchmarks
.162
0
ceiling
best
median
.104 BMD2024.dotted_1Behavioral-accuracy_distance v1 rank 126
.104
0
ceiling
best
median
sample 0 sample 1 sample 2 sample 3 sample 4 sample 5 sample 6 sample 7 sample 8 sample 9
.186 BMD2024.texture_1Behavioral-accuracy_distance v1 rank 93
.186
0
ceiling
best
median
sample 0 sample 1 sample 2 sample 3 sample 4 sample 5 sample 6 sample 7 sample 8 sample 9
.231 BMD2024.texture_2Behavioral-accuracy_distance v1 rank 58
.231
0
ceiling
best
median
sample 0 sample 1 sample 2 sample 3 sample 4 sample 5 sample 6 sample 7 sample 8 sample 9
.126 BMD2024.dotted_2Behavioral-accuracy_distance v1 rank 107
.126
0
ceiling
best
median
sample 0 sample 1 sample 2 sample 3 sample 4 sample 5 sample 6 sample 7 sample 8 sample 9
.317 Coggan2024_behavior-ConditionWiseAccuracySimilarity v1 rank 93
.317
0
ceiling
best
median
sample 0 sample 1 sample 2 sample 3 sample 4 sample 5 sample 6 sample 7 sample 8 sample 9
.384 engineering_vision rank 101
25 benchmarks
.384
0
ceiling
best
median
.704 ImageNet-top1 v1 [reference] rank 110
.704
0
ceiling
best
median
sample 0 sample 1 sample 2 sample 3 sample 4 sample 5 sample 6 sample 7 sample 8 sample 9
.407 ImageNet-C-top1 [reference] rank 76
4 benchmarks
.407
0
ceiling
best
median
.381 ImageNet-C-noise-top1 v2 [reference] rank 74
.381
0
ceiling
best
median
sample 0 sample 1 sample 2 sample 3 sample 4 sample 5 sample 6 sample 7 sample 8 sample 9
.349 ImageNet-C-blur-top1 v2 [reference] rank 83
.349
0
ceiling
best
median
sample 0 sample 1 sample 2 sample 3 sample 4 sample 5 sample 6 sample 7 sample 8 sample 9
.410 ImageNet-C-weather-top1 v2 [reference] rank 100
.410
0
ceiling
best
median
sample 0 sample 1 sample 2 sample 3 sample 4 sample 5 sample 6 sample 7 sample 8 sample 9
.488 ImageNet-C-digital-top1 v2 [reference] rank 82
.488
0
ceiling
best
median
sample 0 sample 1 sample 2 sample 3 sample 4 sample 5 sample 6 sample 7 sample 8 sample 9
.543 Geirhos2021-top1 [reference] rank 131
17 benchmarks
.543
0
ceiling
best
median
.963 Geirhos2021colour-top1 v1 [reference] rank 129
.963
0
ceiling
best
median
sample 0 sample 1 sample 2 sample 3 sample 4 sample 5 sample 6 sample 7 sample 8 sample 9
.660 Geirhos2021contrast-top1 v1 [reference] rank 155
.660
0
ceiling
best
median
sample 0 sample 1 sample 2 sample 3 sample 4 sample 5 sample 6 sample 7 sample 8 sample 9
.226 Geirhos2021cueconflict-top1 v1 [reference] rank 97
.226
0
ceiling
best
median
sample 0 sample 1 sample 2 sample 3 sample 4 sample 5 sample 6 sample 7 sample 8 sample 9
.169 Geirhos2021edge-top1 v1 [reference] rank 220
.169
0
ceiling
best
median
sample 0 sample 1 sample 2 sample 3 sample 4 sample 5 sample 6 sample 7 sample 8 sample 9
.535 Geirhos2021eidolonI-top1 v1 [reference] rank 61
.535
0
ceiling
best
median
sample 0 sample 1 sample 2 sample 3 sample 4 sample 5 sample 6 sample 7 sample 8 sample 9
.537 Geirhos2021eidolonII-top1 v1 [reference] rank 104
.537
0
ceiling
best
median
sample 0 sample 1 sample 2 sample 3 sample 4 sample 5 sample 6 sample 7 sample 8 sample 9
.533 Geirhos2021eidolonIII-top1 v1 [reference] rank 124
.533
0
ceiling
best
median
sample 0 sample 1 sample 2 sample 3 sample 4 sample 5 sample 6 sample 7 sample 8 sample 9
.939 Geirhos2021falsecolour-top1 v1 [reference] rank 116
.939
0
ceiling
best
median
sample 0 sample 1 sample 2 sample 3 sample 4 sample 5 sample 6 sample 7 sample 8 sample 9
.248 Geirhos2021highpass-top1 v1 [reference] rank 215
.248
0
ceiling
best
median
sample 0 sample 1 sample 2 sample 3 sample 4 sample 5 sample 6 sample 7 sample 8 sample 9
.453 Geirhos2021lowpass-top1 v1 [reference] rank 88
.453
0
ceiling
best
median
sample 0 sample 1 sample 2 sample 3 sample 4 sample 5 sample 6 sample 7 sample 8 sample 9
.577 Geirhos2021phasescrambling-top1 v1 [reference] rank 151
.577
0
ceiling
best
median
sample 0 sample 1 sample 2 sample 3 sample 4 sample 5 sample 6 sample 7 sample 8 sample 9
.709 Geirhos2021powerequalisation-top1 v1 [reference] rank 120
.709
0
ceiling
best
median
sample 0 sample 1 sample 2 sample 3 sample 4 sample 5 sample 6 sample 7 sample 8 sample 9
.670 Geirhos2021rotation-top1 v1 [reference] rank 130
.670
0
ceiling
best
median
sample 0 sample 1 sample 2 sample 3 sample 4 sample 5 sample 6 sample 7 sample 8 sample 9
.562 Geirhos2021silhouette-top1 v1 [reference] rank 54
.562
0
ceiling
best
median
sample 0 sample 1 sample 2 sample 3 sample 4 sample 5 sample 6 sample 7 sample 8 sample 9
.603 Geirhos2021sketch-top1 v1 [reference] rank 130
.603
0
ceiling
best
median
sample 0 sample 1 sample 2 sample 3 sample 4 sample 5 sample 6 sample 7 sample 8 sample 9
.404 Geirhos2021stylized-top1 v1 [reference] rank 106
.404
0
ceiling
best
median
sample 0 sample 1 sample 2 sample 3 sample 4 sample 5 sample 6 sample 7 sample 8 sample 9
.440 Geirhos2021uniformnoise-top1 v1 [reference] rank 127
.440
0
ceiling
best
median
sample 0 sample 1 sample 2 sample 3 sample 4 sample 5 sample 6 sample 7 sample 8 sample 9
.266 Hermann2020 [reference] rank 104
2 benchmarks
.266
0
ceiling
best
median
.195 Hermann2020cueconflict-shape_match v1 [reference] rank 91
.195
0
ceiling
best
median
sample 0 sample 1 sample 2 sample 3 sample 4 sample 5 sample 6 sample 7 sample 8 sample 9
.336 Hermann2020cueconflict-shape_bias v1 [reference] rank 102
.336
0
ceiling
best
median
sample 0 sample 1 sample 2 sample 3 sample 4 sample 5 sample 6 sample 7 sample 8 sample 9

How to use

from brainscore_vision import load_model
model = load_model("vonegrcnn_52e_full")
model.start_task(...)
model.start_recording(...)
model.look_at(...)

Benchmarks bibtex

@inproceedings{santurkar2019computer,
    title={Computer Vision with a Single (Robust) Classifier},
    author={Shibani Santurkar and Dimitris Tsipras and Brandon Tran and Andrew Ilyas and Logan Engstrom and Aleksander Madry},
    booktitle={ArXiv preprint arXiv:1906.09453},
    year={2019}
}
        @article {Marques2021.03.01.433495,
	author = {Marques, Tiago and Schrimpf, Martin and DiCarlo, James J.},
	title = {Multi-scale hierarchical neural network models that bridge from single neurons in the primate primary visual cortex to object recognition behavior},
	elocation-id = {2021.03.01.433495},
	year = {2021},
	doi = {10.1101/2021.03.01.433495},
	publisher = {Cold Spring Harbor Laboratory},
	abstract = {Primate visual object recognition relies on the representations in cortical areas at the top of the ventral stream that are computed by a complex, hierarchical network of neural populations. While recent work has created reasonably accurate image-computable hierarchical neural network models of those neural stages, those models do not yet bridge between the properties of individual neurons and the overall emergent behavior of the ventral stream. One reason we cannot yet do this is that individual artificial neurons in multi-stage models have not been shown to be functionally similar to individual biological neurons. Here, we took an important first step by building and evaluating hundreds of hierarchical neural network models in how well their artificial single neurons approximate macaque primary visual cortical (V1) neurons. We found that single neurons in certain models are surprisingly similar to their biological counterparts and that the distributions of single neuron properties, such as those related to orientation and spatial frequency tuning, approximately match those in macaque V1. Critically, we observed that hierarchical models with V1 stages that better match macaque V1 at the single neuron level are also more aligned with human object recognition behavior. Finally, we show that an optimized classical neuroscientific model of V1 is more functionally similar to primate V1 than all of the tested multi-stage models, suggesting room for further model improvements with tangible payoffs in closer alignment to human behavior. These results provide the first multi-stage, multi-scale models that allow our field to ask precisely how the specific properties of individual V1 neurons relate to recognition behavior.HighlightsImage-computable hierarchical neural network models can be naturally extended to create hierarchical {\textquotedblleft}brain models{\textquotedblright} that allow direct comparison with biological neural networks at multiple scales {\textendash} from single neurons, to population of neurons, to behavior.Single neurons in some of these hierarchical brain models are functionally similar to single neurons in macaque primate visual cortex (V1)Some hierarchical brain models have processing stages in which the entire distribution of artificial neuron properties closely matches the biological distributions of those same properties in macaque V1Hierarchical brain models whose V1 processing stages better match the macaque V1 stage also tend to be more aligned with human object recognition behavior at their output stageCompeting Interest StatementThe authors have declared no competing interest.},
	URL = {https://www.biorxiv.org/content/early/2021/08/13/2021.03.01.433495},
	eprint = {https://www.biorxiv.org/content/early/2021/08/13/2021.03.01.433495.full.pdf},
	journal = {bioRxiv}
}
        @article{Freeman2013,
            author = {Freeman, Jeremy and Ziemba, Corey M. and Heeger, David J. and Simoncelli, E. P. and Movshon, J. A.},
            doi = {10.1038/nn.3402},
            issn = {10976256},
            journal = {Nature Neuroscience},
            number = {7},
            pages = {974--981},
            pmid = {23685719},
            publisher = {Nature Publishing Group},
            title = {{A functional and perceptual signature of the second visual area in primates}},
            url = {http://dx.doi.org/10.1038/nn.3402},
            volume = {16},
            year = {2013}
            }
        @article{Cavanaugh2002,
            author = {Cavanaugh, James R. and Bair, Wyeth and Movshon, J. A.},
            doi = {10.1152/jn.00692.2001},
            isbn = {0022-3077 (Print) 0022-3077 (Linking)},
            issn = {0022-3077},
            journal = {Journal of Neurophysiology},
            mendeley-groups = {Benchmark effects/Done,Benchmark effects/*Surround Suppression},
            number = {5},
            pages = {2530--2546},
            pmid = {12424292},
            title = {{Nature and Interaction of Signals From the Receptive Field Center and Surround in Macaque V1 Neurons}},
            url = {http://www.physiology.org/doi/10.1152/jn.00692.2001},
            volume = {88},
            year = {2002}
            }
        @article {Rajalingham240614,
                author = {Rajalingham, Rishi and Issa, Elias B. and Bashivan, Pouya and Kar, Kohitij and Schmidt, Kailyn and DiCarlo, James J.},
                title = {Large-scale, high-resolution comparison of the core visual object recognition behavior of humans, monkeys, and state-of-the-art deep artificial neural networks},
                elocation-id = {240614},
                year = {2018},
                doi = {10.1101/240614},
                publisher = {Cold Spring Harbor Laboratory},
                abstract = {Primates{	extemdash}including humans{	extemdash}can typically recognize objects in visual images at a glance even in the face of naturally occurring identity-preserving image transformations (e.g. changes in viewpoint). A primary neuroscience goal is to uncover neuron-level mechanistic models that quantitatively explain this behavior by predicting primate performance for each and every image. Here, we applied this stringent behavioral prediction test to the leading mechanistic models of primate vision (specifically, deep, convolutional, artificial neural networks; ANNs) by directly comparing their behavioral signatures against those of humans and rhesus macaque monkeys. Using high-throughput data collection systems for human and monkey psychophysics, we collected over one million behavioral trials for 2400 images over 276 binary object discrimination tasks. Consistent with previous work, we observed that state-of-the-art deep, feed-forward convolutional ANNs trained for visual categorization (termed DCNNIC models) accurately predicted primate patterns of object-level confusion. However, when we examined behavioral performance for individual images within each object discrimination task, we found that all tested DCNNIC models were significantly non-predictive of primate performance, and that this prediction failure was not accounted for by simple image attributes, nor rescued by simple model modifications. These results show that current DCNNIC models cannot account for the image-level behavioral patterns of primates, and that new ANN models are needed to more precisely capture the neural mechanisms underlying primate object vision. To this end, large-scale, high-resolution primate behavioral benchmarks{	extemdash}such as those obtained here{	extemdash}could serve as direct guides for discovering such models.SIGNIFICANCE STATEMENT Recently, specific feed-forward deep convolutional artificial neural networks (ANNs) models have dramatically advanced our quantitative understanding of the neural mechanisms underlying primate core object recognition. In this work, we tested the limits of those ANNs by systematically comparing the behavioral responses of these models with the behavioral responses of humans and monkeys, at the resolution of individual images. Using these high-resolution metrics, we found that all tested ANN models significantly diverged from primate behavior. Going forward, these high-resolution, large-scale primate behavioral benchmarks could serve as direct guides for discovering better ANN models of the primate visual system.},
                URL = {https://www.biorxiv.org/content/early/2018/02/12/240614},
                eprint = {https://www.biorxiv.org/content/early/2018/02/12/240614.full.pdf},
                journal = {bioRxiv}
            }
        @article{geirhos2021partial,
              title={Partial success in closing the gap between human and machine vision},
              author={Geirhos, Robert and Narayanappa, Kantharaju and Mitzkus, Benjamin and Thieringer, Tizian and Bethge, Matthias and Wichmann, Felix A and Brendel, Wieland},
              journal={Advances in Neural Information Processing Systems},
              volume={34},
              year={2021},
              url={https://openreview.net/forum?id=QkljT4mrfs}
        }
        @article{BAKER2022104913,
                title = {Deep learning models fail to capture the configural nature of human shape perception},
                journal = {iScience},
                volume = {25},
                number = {9},
                pages = {104913},
                year = {2022},
                issn = {2589-0042},
                doi = {https://doi.org/10.1016/j.isci.2022.104913},
                url = {https://www.sciencedirect.com/science/article/pii/S2589004222011853},
                author = {Nicholas Baker and James H. Elder},
                keywords = {Biological sciences, Neuroscience, Sensory neuroscience},
                abstract = {Summary
                A hallmark of human object perception is sensitivity to the holistic configuration of the local shape features of an object. Deep convolutional neural networks (DCNNs) are currently the dominant models for object recognition processing in the visual cortex, but do they capture this configural sensitivity? To answer this question, we employed a dataset of animal silhouettes and created a variant of this dataset that disrupts the configuration of each object while preserving local features. While human performance was impacted by this manipulation, DCNN performance was not, indicating insensitivity to object configuration. Modifications to training and architecture to make networks more brain-like did not lead to configural processing, and none of the networks were able to accurately predict trial-by-trial human object judgements. We speculate that to match human configural sensitivity, networks must be trained to solve a broader range of object tasks beyond category recognition.}
        }
        @article {Maniquet2024.04.02.587669,
	author = {Maniquet, Tim and de Beeck, Hans Op and Costantino, Andrea Ivan},
	title = {Recurrent issues with deep neural network models of visual recognition},
	elocation-id = {2024.04.02.587669},
	year = {2024},
	doi = {10.1101/2024.04.02.587669},
	publisher = {Cold Spring Harbor Laboratory},
	URL = {https://www.biorxiv.org/content/early/2024/04/10/2024.04.02.587669},
	eprint = {https://www.biorxiv.org/content/early/2024/04/10/2024.04.02.587669.full.pdf},
	journal = {bioRxiv}
}
        @misc{ferguson_ngo_lee_dicarlo_schrimpf_2024,
         title={How Well is Visual Search Asymmetry predicted by a Binary-Choice, Rapid, Accuracy-based Visual-search, Oddball-detection (BRAVO) task?},
         url={osf.io/5ba3n},
         DOI={10.17605/OSF.IO/5BA3N},
         publisher={OSF},
         author={Ferguson, Michael E, Jr and Ngo, Jerry and Lee, Michael and DiCarlo, James and Schrimpf, Martin},
         year={2024},
         month={Jun}
}
        @INPROCEEDINGS{5206848,  
                                                author={J. {Deng} and W. {Dong} and R. {Socher} and L. {Li} and  {Kai Li} and  {Li Fei-Fei}},  
                                                booktitle={2009 IEEE Conference on Computer Vision and Pattern Recognition},   
                                                title={ImageNet: A large-scale hierarchical image database},   
                                                year={2009},  
                                                volume={},  
                                                number={},  
                                                pages={248-255},
                                            }
        @ARTICLE{Hendrycks2019-di,
   title         = "Benchmarking Neural Network Robustness to Common Corruptions
                    and Perturbations",
   author        = "Hendrycks, Dan and Dietterich, Thomas",
   abstract      = "In this paper we establish rigorous benchmarks for image
                    classifier robustness. Our first benchmark, ImageNet-C,
                    standardizes and expands the corruption robustness topic,
                    while showing which classifiers are preferable in
                    safety-critical applications. Then we propose a new dataset
                    called ImageNet-P which enables researchers to benchmark a
                    classifier's robustness to common perturbations. Unlike
                    recent robustness research, this benchmark evaluates
                    performance on common corruptions and perturbations not
                    worst-case adversarial perturbations. We find that there are
                    negligible changes in relative corruption robustness from
                    AlexNet classifiers to ResNet classifiers. Afterward we
                    discover ways to enhance corruption and perturbation
                    robustness. We even find that a bypassed adversarial defense
                    provides substantial common perturbation robustness.
                    Together our benchmarks may aid future work toward networks
                    that robustly generalize.",
   month         =  mar,
   year          =  2019,
   archivePrefix = "arXiv",
   primaryClass  = "cs.LG",
   eprint        = "1903.12261",
   url           = "https://arxiv.org/abs/1903.12261"
}
        @article{hermann2020origins,
              title={The origins and prevalence of texture bias in convolutional neural networks},
              author={Hermann, Katherine and Chen, Ting and Kornblith, Simon},
              journal={Advances in Neural Information Processing Systems},
              volume={33},
              pages={19000--19015},
              year={2020},
              url={https://proceedings.neurips.cc/paper/2020/hash/db5f9f42a7157abe65bb145000b5871a-Abstract.html}
        }
        

Layer Commitment

Region Layer
V1 module.bottleneck

Visual Angle

None degrees