Scores on benchmarks

Model rank shown below is with respect to all public models.
.166 average_vision rank 297
81 benchmarks
.166
0
ceiling
best
median
.276 neural_vision rank 247
38 benchmarks
.276
0
ceiling
best
median
.343 V1 rank 155
24 benchmarks
.343
0
ceiling
best
median
.687 Marques2020 [reference] rank 244
22 benchmarks
.687
0
ceiling
best
median
.886 V1-orientation rank 102
7 benchmarks
.886
0
ceiling
best
median
1.000 Marques2020_Ringach2002-or_selective v1 rank 1
1.000
0
ceiling
best
median
sample 0 sample 1 sample 2 sample 3 sample 4 sample 5 sample 6 sample 7 sample 8 sample 9
.806 Marques2020_Ringach2002-circular_variance v1 rank 192
.806
0
ceiling
best
median
sample 0 sample 1 sample 2 sample 3 sample 4 sample 5 sample 6 sample 7 sample 8 sample 9
.839 Marques2020_Ringach2002-orth_pref_ratio v1 rank 128
.839
0
ceiling
best
median
sample 0 sample 1 sample 2 sample 3 sample 4 sample 5 sample 6 sample 7 sample 8 sample 9
.847 Marques2020_Ringach2002-cv_bandwidth_ratio v1 rank 174
.847
0
ceiling
best
median
sample 0 sample 1 sample 2 sample 3 sample 4 sample 5 sample 6 sample 7 sample 8 sample 9
.963 Marques2020_DeValois1982-pref_or v1 rank 116
.963
0
ceiling
best
median
sample 0 sample 1 sample 2 sample 3 sample 4 sample 5 sample 6 sample 7 sample 8 sample 9
.845 Marques2020_Ringach2002-opr_cv_diff v1 rank 202
.845
0
ceiling
best
median
sample 0 sample 1 sample 2 sample 3 sample 4 sample 5 sample 6 sample 7 sample 8 sample 9
.899 Marques2020_Ringach2002-or_bandwidth v1 rank 85
.899
0
ceiling
best
median
sample 0 sample 1 sample 2 sample 3 sample 4 sample 5 sample 6 sample 7 sample 8 sample 9
.784 V1-spatial_frequency rank 166
3 benchmarks
.784
0
ceiling
best
median
.728 Marques2020_DeValois1982-peak_sf v1 rank 159
.728
0
ceiling
best
median
sample 0 sample 1 sample 2 sample 3 sample 4 sample 5 sample 6 sample 7 sample 8 sample 9
.717 Marques2020_Schiller1976-sf_bandwidth v1 [reference] rank 260
.717
0
ceiling
best
median
sample 0 sample 1 sample 2 sample 3 sample 4 sample 5 sample 6 sample 7 sample 8 sample 9
.905 Marques2020_Schiller1976-sf_selective v1 [reference] rank 120
.905
0
ceiling
best
median
sample 0 sample 1 sample 2 sample 3 sample 4 sample 5 sample 6 sample 7 sample 8 sample 9
.466 V1-response_selectivity rank 322
4 benchmarks
.466
0
ceiling
best
median
.451 Marques2020_FreemanZiemba2013-texture_selectivity v1 [reference] rank 323
.451
0
ceiling
best
median
sample 0 sample 1 sample 2 sample 3 sample 4 sample 5 sample 6 sample 7 sample 8 sample 9
.526 Marques2020_Ringach2002-modulation_ratio v1 rank 134
.526
0
ceiling
best
median
sample 0 sample 1 sample 2 sample 3 sample 4 sample 5 sample 6 sample 7 sample 8 sample 9
.561 Marques2020_FreemanZiemba2013-texture_variance_ratio v1 [reference] rank 303
.561
0
ceiling
best
median
sample 0 sample 1 sample 2 sample 3 sample 4 sample 5 sample 6 sample 7 sample 8 sample 9
.325 Marques2020_FreemanZiemba2013-texture_sparseness v1 [reference] rank 332
.325
0
ceiling
best
median
sample 0 sample 1 sample 2 sample 3 sample 4 sample 5 sample 6 sample 7 sample 8 sample 9
.535 V1-receptive_field_size rank 205
2 benchmarks
.535
0
ceiling
best
median
.665 Marques2020_Cavanaugh2002-grating_summation_field v1 [reference] rank 177
.665
0
ceiling
best
median
sample 0 sample 1 sample 2 sample 3 sample 4 sample 5 sample 6 sample 7 sample 8 sample 9
.404 Marques2020_Cavanaugh2002-surround_diameter v1 [reference] rank 214
.404
0
ceiling
best
median
sample 0 sample 1 sample 2 sample 3 sample 4 sample 5 sample 6 sample 7 sample 8 sample 9
.740 V1-surround_modulation rank 98
1 benchmark
.740
0
ceiling
best
median
.740 Marques2020_Cavanaugh2002-surround_suppression_index v1 [reference] rank 98
.740
0
ceiling
best
median
sample 0 sample 1 sample 2 sample 3 sample 4 sample 5 sample 6 sample 7 sample 8 sample 9
.549 V1-texture_modulation rank 256
2 benchmarks
.549
0
ceiling
best
median
.486 Marques2020_FreemanZiemba2013-abs_texture_modulation_index v1 [reference] rank 206
.486
0
ceiling
best
median
sample 0 sample 1 sample 2 sample 3 sample 4 sample 5 sample 6 sample 7 sample 8 sample 9
.613 Marques2020_FreemanZiemba2013-texture_modulation_index v1 [reference] rank 291
.613
0
ceiling
best
median
sample 0 sample 1 sample 2 sample 3 sample 4 sample 5 sample 6 sample 7 sample 8 sample 9
.852 V1-response_magnitude rank 189
3 benchmarks
.852
0
ceiling
best
median
.866 Marques2020_FreemanZiemba2013-max_texture v1 [reference] rank 169
.866
0
ceiling
best
median
sample 0 sample 1 sample 2 sample 3 sample 4 sample 5 sample 6 sample 7 sample 8 sample 9
.966 Marques2020_Ringach2002-max_dc v1 rank 129
.966
0
ceiling
best
median
sample 0 sample 1 sample 2 sample 3 sample 4 sample 5 sample 6 sample 7 sample 8 sample 9
.723 Marques2020_FreemanZiemba2013-max_noise v1 [reference] rank 255
.723
0
ceiling
best
median
sample 0 sample 1 sample 2 sample 3 sample 4 sample 5 sample 6 sample 7 sample 8 sample 9
.343 FreemanZiemba2013.V1-pls v2 [reference] rank 29
.343
0
ceiling
best
median
recordings from 102 sites in V1
sample 0 sample 1 sample 2 sample 3 sample 4 sample 5 sample 6 sample 7 sample 8 sample 9
.162 V2 rank 188
2 benchmarks
.162
0
ceiling
best
median
.324 FreemanZiemba2013.V2-pls v2 [reference] rank 90
.324
0
ceiling
best
median
recordings from 103 sites in V2
sample 0 sample 1 sample 2 sample 3 sample 4 sample 5 sample 6 sample 7 sample 8 sample 9
.357 V4 rank 266
5 benchmarks
.357
0
ceiling
best
median
.443 SanghaviJozwik2020.V4-pls v1 [reference] rank 258
.443
0
ceiling
best
median
recordings from 50 sites in V4
sample 0 sample 1 sample 2 sample 3 sample 4 sample 5 sample 6 sample 7 sample 8 sample 9
.621 Sanghavi2020.V4-pls v1 [reference] rank 175
.621
0
ceiling
best
median
recordings from 47 sites in V4
sample 0 sample 1 sample 2 sample 3 sample 4 sample 5 sample 6 sample 7 sample 8 sample 9
.163 SanghaviMurty2020.V4-pls v1 [reference] rank 315
.163
0
ceiling
best
median
recordings from 46 sites in V4
sample 0 sample 1 sample 2 sample 3 sample 4 sample 5 sample 6 sample 7 sample 8 sample 9
.558 MajajHong2015.V4-pls v3 [reference] rank 260
.558
0
ceiling
best
median
recordings from 88 sites in V4
sample 0 sample 1 sample 2 sample 3 sample 4 sample 5 sample 6 sample 7 sample 8 sample 9
.242 IT rank 322
7 benchmarks
.242
0
ceiling
best
median
.339 SanghaviMurty2020.IT-pls v1 [reference] rank 230
.339
0
ceiling
best
median
recordings from 29 sites in IT
sample 0 sample 1 sample 2 sample 3 sample 4 sample 5 sample 6 sample 7 sample 8 sample 9
.457 Sanghavi2020.IT-pls v1 [reference] rank 323
.457
0
ceiling
best
median
recordings from 88 sites in IT
sample 0 sample 1 sample 2 sample 3 sample 4 sample 5 sample 6 sample 7 sample 8 sample 9
.456 SanghaviJozwik2020.IT-pls v1 [reference] rank 257
.456
0
ceiling
best
median
recordings from 26 sites in IT
sample 0 sample 1 sample 2 sample 3 sample 4 sample 5 sample 6 sample 7 sample 8 sample 9
.444 MajajHong2015.IT-pls v3 [reference] rank 331
.444
0
ceiling
best
median
recordings from 168 sites in IT
sample 0 sample 1 sample 2 sample 3 sample 4 sample 5 sample 6 sample 7 sample 8 sample 9
X Kar2019-ost v2 [reference] rank X
X
0
ceiling
best
median
recordings from 424 sites in IT
sample 0 sample 1 sample 2 sample 3 sample 4 sample 5 sample 6 sample 7 sample 8 sample 9
.057 behavior_vision rank 334
43 benchmarks
.057
0
ceiling
best
median
.341 Rajalingham2018-i2n v2 [reference] rank 306
.341
0
ceiling
best
median
match-to-sample task
sample 0 sample 1 sample 2 sample 3 sample 4 sample 5 sample 6 sample 7 sample 8 sample 9
.112 Geirhos2021-error_consistency [reference] rank 209
17 benchmarks
.112
0
ceiling
best
median
.104 Geirhos2021colour-error_consistency v1 [reference] rank 228
.104
0
ceiling
best
median
sample 0 sample 1 sample 2 sample 3 sample 4 sample 5 sample 6 sample 7 sample 8 sample 9
.101 Geirhos2021contrast-error_consistency v1 [reference] rank 208
.101
0
ceiling
best
median
sample 0 sample 1 sample 2 sample 3 sample 4 sample 5 sample 6 sample 7 sample 8 sample 9
.157 Geirhos2021cueconflict-error_consistency v1 [reference] rank 160
.157
0
ceiling
best
median
sample 0 sample 1 sample 2 sample 3 sample 4 sample 5 sample 6 sample 7 sample 8 sample 9
.077 Geirhos2021edge-error_consistency v1 [reference] rank 152
.077
0
ceiling
best
median
sample 0 sample 1 sample 2 sample 3 sample 4 sample 5 sample 6 sample 7 sample 8 sample 9
.297 Geirhos2021eidolonI-error_consistency v1 [reference] rank 148
.297
0
ceiling
best
median
sample 0 sample 1 sample 2 sample 3 sample 4 sample 5 sample 6 sample 7 sample 8 sample 9
.235 Geirhos2021eidolonII-error_consistency v1 [reference] rank 191
.235
0
ceiling
best
median
sample 0 sample 1 sample 2 sample 3 sample 4 sample 5 sample 6 sample 7 sample 8 sample 9
.200 Geirhos2021eidolonIII-error_consistency v1 [reference] rank 196
.200
0
ceiling
best
median
sample 0 sample 1 sample 2 sample 3 sample 4 sample 5 sample 6 sample 7 sample 8 sample 9
.045 Geirhos2021falsecolour-error_consistency v1 [reference] rank 243
.045
0
ceiling
best
median
sample 0 sample 1 sample 2 sample 3 sample 4 sample 5 sample 6 sample 7 sample 8 sample 9
.081 Geirhos2021highpass-error_consistency v1 [reference] rank 95
.081
0
ceiling
best
median
sample 0 sample 1 sample 2 sample 3 sample 4 sample 5 sample 6 sample 7 sample 8 sample 9
.066 Geirhos2021lowpass-error_consistency v1 [reference] rank 224
.066
0
ceiling
best
median
sample 0 sample 1 sample 2 sample 3 sample 4 sample 5 sample 6 sample 7 sample 8 sample 9
.022 Geirhos2021phasescrambling-error_consistency v1 [reference] rank 259
.022
0
ceiling
best
median
sample 0 sample 1 sample 2 sample 3 sample 4 sample 5 sample 6 sample 7 sample 8 sample 9
.105 Geirhos2021powerequalisation-error_consistency v1 [reference] rank 129
.105
0
ceiling
best
median
sample 0 sample 1 sample 2 sample 3 sample 4 sample 5 sample 6 sample 7 sample 8 sample 9
.045 Geirhos2021rotation-error_consistency v1 [reference] rank 257
.045
0
ceiling
best
median
sample 0 sample 1 sample 2 sample 3 sample 4 sample 5 sample 6 sample 7 sample 8 sample 9
.134 Geirhos2021silhouette-error_consistency v1 [reference] rank 253
.134
0
ceiling
best
median
sample 0 sample 1 sample 2 sample 3 sample 4 sample 5 sample 6 sample 7 sample 8 sample 9
.046 Geirhos2021sketch-error_consistency v1 [reference] rank 213
.046
0
ceiling
best
median
sample 0 sample 1 sample 2 sample 3 sample 4 sample 5 sample 6 sample 7 sample 8 sample 9
.182 Geirhos2021stylized-error_consistency v1 [reference] rank 176
.182
0
ceiling
best
median
sample 0 sample 1 sample 2 sample 3 sample 4 sample 5 sample 6 sample 7 sample 8 sample 9
.010 Geirhos2021uniformnoise-error_consistency v1 [reference] rank 276
.010
0
ceiling
best
median
sample 0 sample 1 sample 2 sample 3 sample 4 sample 5 sample 6 sample 7 sample 8 sample 9

How to use

from brainscore_vision import load_model
model = load_model("vonealexnet_gaussian_noise_std4_fixed")
model.start_task(...)
model.start_recording(...)
model.look_at(...)

Benchmarks bibtex

@article {Marques2021.03.01.433495,
	author = {Marques, Tiago and Schrimpf, Martin and DiCarlo, James J.},
	title = {Multi-scale hierarchical neural network models that bridge from single neurons in the primate primary visual cortex to object recognition behavior},
	elocation-id = {2021.03.01.433495},
	year = {2021},
	doi = {10.1101/2021.03.01.433495},
	publisher = {Cold Spring Harbor Laboratory},
	abstract = {Primate visual object recognition relies on the representations in cortical areas at the top of the ventral stream that are computed by a complex, hierarchical network of neural populations. While recent work has created reasonably accurate image-computable hierarchical neural network models of those neural stages, those models do not yet bridge between the properties of individual neurons and the overall emergent behavior of the ventral stream. One reason we cannot yet do this is that individual artificial neurons in multi-stage models have not been shown to be functionally similar to individual biological neurons. Here, we took an important first step by building and evaluating hundreds of hierarchical neural network models in how well their artificial single neurons approximate macaque primary visual cortical (V1) neurons. We found that single neurons in certain models are surprisingly similar to their biological counterparts and that the distributions of single neuron properties, such as those related to orientation and spatial frequency tuning, approximately match those in macaque V1. Critically, we observed that hierarchical models with V1 stages that better match macaque V1 at the single neuron level are also more aligned with human object recognition behavior. Finally, we show that an optimized classical neuroscientific model of V1 is more functionally similar to primate V1 than all of the tested multi-stage models, suggesting room for further model improvements with tangible payoffs in closer alignment to human behavior. These results provide the first multi-stage, multi-scale models that allow our field to ask precisely how the specific properties of individual V1 neurons relate to recognition behavior.HighlightsImage-computable hierarchical neural network models can be naturally extended to create hierarchical {\textquotedblleft}brain models{\textquotedblright} that allow direct comparison with biological neural networks at multiple scales {\textendash} from single neurons, to population of neurons, to behavior.Single neurons in some of these hierarchical brain models are functionally similar to single neurons in macaque primate visual cortex (V1)Some hierarchical brain models have processing stages in which the entire distribution of artificial neuron properties closely matches the biological distributions of those same properties in macaque V1Hierarchical brain models whose V1 processing stages better match the macaque V1 stage also tend to be more aligned with human object recognition behavior at their output stageCompeting Interest StatementThe authors have declared no competing interest.},
	URL = {https://www.biorxiv.org/content/early/2021/08/13/2021.03.01.433495},
	eprint = {https://www.biorxiv.org/content/early/2021/08/13/2021.03.01.433495.full.pdf},
	journal = {bioRxiv}
}
        @article{Schiller1976,
            author = {Schiller, P. H. and Finlay, B. L. and Volman, S. F.},
            doi = {10.1152/jn.1976.39.6.1352},
            issn = {0022-3077},
            journal = {Journal of neurophysiology},
            number = {6},
            pages = {1334--1351},
            pmid = {825624},
            title = {{Quantitative studies of single-cell properties in monkey striate cortex. III. Spatial Frequency}},
            url = {http://www.ncbi.nlm.nih.gov/pubmed/825624},
            volume = {39},
            year = {1976}
            }
        @article{Freeman2013,
            author = {Freeman, Jeremy and Ziemba, Corey M. and Heeger, David J. and Simoncelli, E. P. and Movshon, J. A.},
            doi = {10.1038/nn.3402},
            issn = {10976256},
            journal = {Nature Neuroscience},
            number = {7},
            pages = {974--981},
            pmid = {23685719},
            publisher = {Nature Publishing Group},
            title = {{A functional and perceptual signature of the second visual area in primates}},
            url = {http://dx.doi.org/10.1038/nn.3402},
            volume = {16},
            year = {2013}
            }
        @article{Cavanaugh2002,
            author = {Cavanaugh, James R. and Bair, Wyeth and Movshon, J. A.},
            doi = {10.1152/jn.00692.2001},
            isbn = {0022-3077 (Print) 0022-3077 (Linking)},
            issn = {0022-3077},
            journal = {Journal of Neurophysiology},
            mendeley-groups = {Benchmark effects/Done,Benchmark effects/*Surround Suppression},
            number = {5},
            pages = {2530--2546},
            pmid = {12424292},
            title = {{Nature and Interaction of Signals From the Receptive Field Center and Surround in Macaque V1 Neurons}},
            url = {http://www.physiology.org/doi/10.1152/jn.00692.2001},
            volume = {88},
            year = {2002}
            }
        @Article{Freeman2013,
                author={Freeman, Jeremy
                and Ziemba, Corey M.
                and Heeger, David J.
                and Simoncelli, Eero P.
                and Movshon, J. Anthony},
                title={A functional and perceptual signature of the second visual area in primates},
                journal={Nature Neuroscience},
                year={2013},
                month={Jul},
                day={01},
                volume={16},
                number={7},
                pages={974-981},
                abstract={The authors examined neuronal responses in V1 and V2 to synthetic texture stimuli that replicate higher-order statistical dependencies found in natural images. V2, but not V1, responded differentially to these textures, in both macaque (single neurons) and human (fMRI). Human detection of naturalistic structure in the same images was predicted by V2 responses, suggesting a role for V2 in representing natural image structure.},
                issn={1546-1726},
                doi={10.1038/nn.3402},
                url={https://doi.org/10.1038/nn.3402}
                }
        @misc{Sanghavi_Jozwik_DiCarlo_2021,
  title={SanghaviJozwik2020},
  url={osf.io/fhy36},
  DOI={10.17605/OSF.IO/FHY36},
  publisher={OSF},
  author={Sanghavi, Sachi and Jozwik, Kamila M and DiCarlo, James J},
  year={2021},
  month={Nov}
}
        @misc{Sanghavi_DiCarlo_2021,
  title={Sanghavi2020},
  url={osf.io/chwdk},
  DOI={10.17605/OSF.IO/CHWDK},
  publisher={OSF},
  author={Sanghavi, Sachi and DiCarlo, James J},
  year={2021},
  month={Nov}
}
        @misc{Sanghavi_Murty_DiCarlo_2021,
  title={SanghaviMurty2020},
  url={osf.io/fchme},
  DOI={10.17605/OSF.IO/FCHME},
  publisher={OSF},
  author={Sanghavi, Sachi and Murty, N A R and DiCarlo, James J},
  year={2021},
  month={Nov}
}
        @article {Majaj13402,
            author = {Majaj, Najib J. and Hong, Ha and Solomon, Ethan A. and DiCarlo, James J.},
            title = {Simple Learned Weighted Sums of Inferior Temporal Neuronal Firing Rates Accurately Predict Human Core Object Recognition Performance},
            volume = {35},
            number = {39},
            pages = {13402--13418},
            year = {2015},
            doi = {10.1523/JNEUROSCI.5181-14.2015},
            publisher = {Society for Neuroscience},
            abstract = {To go beyond qualitative models of the biological substrate of object recognition, we ask: can a single ventral stream neuronal linking hypothesis quantitatively account for core object recognition performance over a broad range of tasks? We measured human performance in 64 object recognition tests using thousands of challenging images that explore shape similarity and identity preserving object variation. We then used multielectrode arrays to measure neuronal population responses to those same images in visual areas V4 and inferior temporal (IT) cortex of monkeys and simulated V1 population responses. We tested leading candidate linking hypotheses and control hypotheses, each postulating how ventral stream neuronal responses underlie object recognition behavior. Specifically, for each hypothesis, we computed the predicted performance on the 64 tests and compared it with the measured pattern of human performance. All tested hypotheses based on low- and mid-level visually evoked activity (pixels, V1, and V4) were very poor predictors of the human behavioral pattern. However, simple learned weighted sums of distributed average IT firing rates exactly predicted the behavioral pattern. More elaborate linking hypotheses relying on IT trial-by-trial correlational structure, finer IT temporal codes, or ones that strictly respect the known spatial substructures of IT ({	extquotedblleft}face patches{	extquotedblright}) did not improve predictive power. Although these results do not reject those more elaborate hypotheses, they suggest a simple, sufficient quantitative model: each object recognition task is learned from the spatially distributed mean firing rates (100 ms) of \~{}60,000 IT neurons and is executed as a simple weighted sum of those firing rates.SIGNIFICANCE STATEMENT We sought to go beyond qualitative models of visual object recognition and determine whether a single neuronal linking hypothesis can quantitatively account for core object recognition behavior. To achieve this, we designed a database of images for evaluating object recognition performance. We used multielectrode arrays to characterize hundreds of neurons in the visual ventral stream of nonhuman primates and measured the object recognition performance of \>100 human observers. Remarkably, we found that simple learned weighted sums of firing rates of neurons in monkey inferior temporal (IT) cortex accurately predicted human performance. Although previous work led us to expect that IT would outperform V4, we were surprised by the quantitative precision with which simple IT-based linking hypotheses accounted for human behavior.},
            issn = {0270-6474},
            URL = {https://www.jneurosci.org/content/35/39/13402},
            eprint = {https://www.jneurosci.org/content/35/39/13402.full.pdf},
            journal = {Journal of Neuroscience}}
        @Article{Kar2019,
                                                    author={Kar, Kohitij
                                                    and Kubilius, Jonas
                                                    and Schmidt, Kailyn
                                                    and Issa, Elias B.
                                                    and DiCarlo, James J.},
                                                    title={Evidence that recurrent circuits are critical to the ventral stream's execution of core object recognition behavior},
                                                    journal={Nature Neuroscience},
                                                    year={2019},
                                                    month={Jun},
                                                    day={01},
                                                    volume={22},
                                                    number={6},
                                                    pages={974-983},
                                                    abstract={Non-recurrent deep convolutional neural networks (CNNs) are currently the best at modeling core object recognition, a behavior that is supported by the densely recurrent primate ventral stream, culminating in the inferior temporal (IT) cortex. If recurrence is critical to this behavior, then primates should outperform feedforward-only deep CNNs for images that require additional recurrent processing beyond the feedforward IT response. Here we first used behavioral methods to discover hundreds of these `challenge' images. Second, using large-scale electrophysiology, we observed that behaviorally sufficient object identity solutions emerged {	extasciitilde}30{	hinspace}ms later in the IT cortex for challenge images compared with primate performance-matched `control' images. Third, these behaviorally critical late-phase IT response patterns were poorly predicted by feedforward deep CNN activations. Notably, very-deep CNNs and shallower recurrent CNNs better predicted these late IT responses, suggesting that there is a functional equivalence between additional nonlinear transformations and recurrence. Beyond arguing that recurrent circuits are critical for rapid object identification, our results provide strong constraints for future recurrent model development.},
                                                    issn={1546-1726},
                                                    doi={10.1038/s41593-019-0392-5},
                                                    url={https://doi.org/10.1038/s41593-019-0392-5}
                                                    }
        @article {Rajalingham240614,
                author = {Rajalingham, Rishi and Issa, Elias B. and Bashivan, Pouya and Kar, Kohitij and Schmidt, Kailyn and DiCarlo, James J.},
                title = {Large-scale, high-resolution comparison of the core visual object recognition behavior of humans, monkeys, and state-of-the-art deep artificial neural networks},
                elocation-id = {240614},
                year = {2018},
                doi = {10.1101/240614},
                publisher = {Cold Spring Harbor Laboratory},
                abstract = {Primates{	extemdash}including humans{	extemdash}can typically recognize objects in visual images at a glance even in the face of naturally occurring identity-preserving image transformations (e.g. changes in viewpoint). A primary neuroscience goal is to uncover neuron-level mechanistic models that quantitatively explain this behavior by predicting primate performance for each and every image. Here, we applied this stringent behavioral prediction test to the leading mechanistic models of primate vision (specifically, deep, convolutional, artificial neural networks; ANNs) by directly comparing their behavioral signatures against those of humans and rhesus macaque monkeys. Using high-throughput data collection systems for human and monkey psychophysics, we collected over one million behavioral trials for 2400 images over 276 binary object discrimination tasks. Consistent with previous work, we observed that state-of-the-art deep, feed-forward convolutional ANNs trained for visual categorization (termed DCNNIC models) accurately predicted primate patterns of object-level confusion. However, when we examined behavioral performance for individual images within each object discrimination task, we found that all tested DCNNIC models were significantly non-predictive of primate performance, and that this prediction failure was not accounted for by simple image attributes, nor rescued by simple model modifications. These results show that current DCNNIC models cannot account for the image-level behavioral patterns of primates, and that new ANN models are needed to more precisely capture the neural mechanisms underlying primate object vision. To this end, large-scale, high-resolution primate behavioral benchmarks{	extemdash}such as those obtained here{	extemdash}could serve as direct guides for discovering such models.SIGNIFICANCE STATEMENT Recently, specific feed-forward deep convolutional artificial neural networks (ANNs) models have dramatically advanced our quantitative understanding of the neural mechanisms underlying primate core object recognition. In this work, we tested the limits of those ANNs by systematically comparing the behavioral responses of these models with the behavioral responses of humans and monkeys, at the resolution of individual images. Using these high-resolution metrics, we found that all tested ANN models significantly diverged from primate behavior. Going forward, these high-resolution, large-scale primate behavioral benchmarks could serve as direct guides for discovering better ANN models of the primate visual system.},
                URL = {https://www.biorxiv.org/content/early/2018/02/12/240614},
                eprint = {https://www.biorxiv.org/content/early/2018/02/12/240614.full.pdf},
                journal = {bioRxiv}
            }
        @article{geirhos2021partial,
              title={Partial success in closing the gap between human and machine vision},
              author={Geirhos, Robert and Narayanappa, Kantharaju and Mitzkus, Benjamin and Thieringer, Tizian and Bethge, Matthias and Wichmann, Felix A and Brendel, Wieland},
              journal={Advances in Neural Information Processing Systems},
              volume={34},
              year={2021},
              url={https://openreview.net/forum?id=QkljT4mrfs}
        }
        

Layer Commitment

Region Layer
V1 relu1_fake_relu
V2 relu1_fake_relu
V4 relu2_fake_relu
IT relu4_fake_relu

Visual Angle

8 degrees