Sample stimuli

sample 0 sample 1 sample 2 sample 3 sample 4 sample 5 sample 6 sample 7 sample 8 sample 9

How to use

from brainscore_vision import load_benchmark
benchmark = load_benchmark("Geirhos2021silhouette-error_consistency")
score = benchmark(my_model)

Model scores

Min Alignment Max Alignment

Rank

Model

Score

1
1.2
2
1.2
3
1.2
4
1.1
5
1.1
6
1.1
7
1.1
8
1.1
9
1.0
10
1.0
11
1.0
12
.993
13
.990
14
.966
15
.966
16
.959
17
.936
18
.914
19
.908
20
.908
21
.904
22
.900
23
.897
24
.891
25
.888
26
.883
27
.870
28
.856
29
.848
30
.841
31
.841
32
.840
33
.827
34
.825
35
.822
36
.818
37
.817
38
.810
39
.793
40
.781
41
.777
42
.773
43
.767
44
.763
45
.763
46
.750
47
.749
48
.737
49
.728
50
.728
51
.718
52
.706
53
.704
54
.701
55
.685
56
.681
57
.675
58
.674
59
.668
60
.663
61
.660
62
.658
63
.658
64
.648
65
.648
66
.647
67
.646
68
.640
69
.628
70
.618
71
.615
72
.614
73
.610
74
.610
75
.608
76
.602
77
.601
78
.584
79
.578
80
.574
81
.560
82
.558
83
.554
84
.553
85
.553
86
.551
87
.549
88
.548
89
.546
90
.546
91
.546
92
.546
93
.544
94
.535
95
.534
96
.531
97
.524
98
.523
99
.521
100
.521
101
.520
102
.520
103
.510
104
.510
105
.509
106
.500
107
.497
108
.492
109
.492
110
.492
111
.492
112
.491
113
.491
114
.491
115
.482
116
.482
117
.482
118
.478
119
.474
120
.474
121
.469
122
.469
123
.468
124
.465
125
.463
126
.461
127
.458
128
.451
129
.450
130
.449
131
.445
132
.439
133
.439
134
.438
135
.437
136
.434
137
.428
138
.421
139
.418
140
.417
141
.409
142
.395
143
.394
144
.392
145
.390
146
.388
147
.384
148
.379
149
.378
150
.378
151
.375
152
.373
153
.369
154
.369
155
.365
156
.364
157
.362
158
.360
159
.358
160
.358
161
.357
162
.353
163
.353
164
.352
165
.349
166
.336
167
.336
168
.335
169
.333
170
.332
171
.328
172
.317
173
.315
174
.314
175
.310
176
.309
177
.304
178
.298
179
.297
180
.296
181
.296
182
.287
183
.287
184
.286
185
.285
186
.280
187
.279
188
.276
189
.270
190
.266
191
.263
192
.262
193
.257
194
.256
195
.255
196
.252
197
.252
198
.249
199
.247
200
.246
201
.245
202
.243
203
.240
204
.236
205
.236
206
.231
207
.231
208
.228
209
.220
210
.214
211
.214
212
.205
213
.204
214
.204
215
.203
216
.203
217
.203
218
.203
219
.203
220
.203
221
.203
222
.203
223
.203
224
.203
225
.203
226
.203
227
.194
228
.194
229
.193
230
.192
231
.186
232
.185
233
.185
234
.185
235
.180
236
.176
237
.169
238
.166
239
.164
240
.163
241
.161
242
.159
243
.154
244
.150
245
.149
246
.149
247
.149
248
.148
249
.147
250
.146
251
.145
252
.143
253
.139
254
.139
255
.139
256
.139
257
.139
258
.139
259
.139
260
.139
261
.135
262
.134
263
.129
264
.127
265
.118
266
.117
267
.117
268
.112
269
.109
270
.107
271
.106
272
.102
273
.102
274
.098
275
.090
276
.089
277
.089
278
.084
279
.084
280
.084
281
.083
282
.082
283
.082
284
.081
285
.077
286
.077
287
.077
288
.077
289
.077
290
.075
291
.073
292
.070
293
.066
294
.065
295
.059
296
.056
297
.054
298
.053
299
.052
300
.051
301
.050
302
.049
303
.046
304
.043
305
.042
306
.041
307
.033
308
.023
309
.023
310
.012
311
.004
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456

Benchmark bibtex

@article{geirhos2021partial,
              title={Partial success in closing the gap between human and machine vision},
              author={Geirhos, Robert and Narayanappa, Kantharaju and Mitzkus, Benjamin and Thieringer, Tizian and Bethge, Matthias and Wichmann, Felix A and Brendel, Wieland},
              journal={Advances in Neural Information Processing Systems},
              volume={34},
              year={2021},
              url={https://openreview.net/forum?id=QkljT4mrfs}
        }

Ceiling

0.48.

Note that scores are relative to this ceiling.

Data: Geirhos2021silhouette

Metric: error_consistency