Sample stimuli

sample 0 sample 1 sample 2 sample 3 sample 4 sample 5 sample 6 sample 7 sample 8 sample 9

How to use

from brainscore_vision import load_benchmark
benchmark = load_benchmark("Marques2020_Ringach2002-modulation_ratio")
score = benchmark(my_model)

Model scores

Min Alignment Max Alignment

Rank

Model

Score

1
.906
2
.900
3
.886
4
.884
5
.872
6
.864
7
.855
8
.818
9
.809
10
.808
11
.798
12
.798
13
.795
14
.793
15
.789
16
.789
17
.783
18
.783
19
.781
20
.774
21
.758
22
.752
23
.749
24
.747
25
.726
26
.719
27
.710
28
.697
29
.695
30
.693
31
.690
32
.688
33
.686
34
.677
35
.676
36
.671
37
.671
38
.670
39
.660
40
.660
41
.659
42
.656
43
.656
44
.651
45
.650
46
.646
47
.646
48
.644
49
.640
50
.638
51
.633
52
.627
53
.626
54
.624
55
.622
56
.617
57
.617
58
.615
59
.611
60
.610
61
.607
62
.607
63
.604
64
.601
65
.601
66
.598
67
.598
68
.598
69
.597
70
.597
71
.596
72
.588
73
.588
74
.587
75
.587
76
.585
77
.581
78
.579
79
.579
80
.579
81
.578
82
.578
83
.577
84
.576
85
.576
86
.575
87
.573
88
.573
89
.571
90
.570
91
.570
92
.570
93
.570
94
.568
95
.567
96
.567
97
.564
98
.565
99
.564
100
.563
101
.561
102
.560
103
.559
104
.559
105
.559
106
.556
107
.553
108
.552
109
.550
110
.548
111
.548
112
.547
113
.545
114
.545
115
.544
116
.542
117
.542
118
.541
119
.539
120
.538
121
.536
122
.536
123
.536
124
.535
125
.533
126
.532
127
.531
128
.530
129
.530
130
.529
131
.528
132
.528
133
.526
134
.527
135
.524
136
.524
137
.524
138
.524
139
.522
140
.519
141
.519
142
.517
143
.517
144
.516
145
.516
146
.514
147
.514
148
.512
149
.511
150
.512
151
.511
152
.509
153
.509
154
.508
155
.504
156
.503
157
.503
158
.501
159
.502
160
.501
161
.501
162
.499
163
.499
164
.498
165
.496
166
.493
167
.493
168
.493
169
.492
170
.491
171
.491
172
.490
173
.490
174
.487
175
.486
176
.485
177
.484
178
.484
179
.482
180
.481
181
.480
182
.480
183
.479
184
.479
185
.478
186
.477
187
.476
188
.475
189
.472
190
.470
191
.469
192
.469
193
.468
194
.469
195
.468
196
.467
197
.465
198
.462
199
.460
200
.458
201
.457
202
.457
203
.457
204
.453
205
.453
206
.452
207
.451
208
.450
209
.448
210
.445
211
.444
212
.443
213
.441
214
.441
215
.440
216
.440
217
.440
218
.439
219
.439
220
.436
221
.436
222
.434
223
.432
224
.429
225
.429
226
.426
227
.421
228
.421
229
.420
230
.420
231
.418
232
.413
233
.412
234
.410
235
.411
236
.410
237
.410
238
.408
239
.407
240
.407
241
.405
242
.404
243
.403
244
.403
245
.403
246
.402
247
.402
248
.397
249
.388
250
.387
251
.387
252
.387
253
.387
254
.387
255
.387
256
.387
257
.387
258
.386
259
.383
260
.382
261
.378
262
.378
263
.378
264
.376
265
.374
266
.371
267
.368
268
.366
269
.365
270
.363
271
.359
272
.358
273
.351
274
.348
275
.347
276
.346
277
.341
278
.340
279
.339
280
.338
281
.338
282
.336
283
.335
284
.334
285
.326
286
.321
287
.318
288
.318
289
.318
290
.316
291
.315
292
.313
293
.313
294
.312
295
.311
296
.308
297
.308
298
.307
299
.303
300
.301
301
.299
302
.298
303
.297
304
.297
305
.297
306
.297
307
.295
308
.295
309
.293
310
.293
311
.291
312
.290
313
.289
314
.288
315
.288
316
.281
317
.281
318
.276
319
.273
320
.272
321
.272
322
.271
323
.271
324
.271
325
.271
326
.263
327
.253
328
.252
329
.198
330
.198
331
.199
332
.198
333
.198
334
.198
335
.199
336
.198
337
X
338
X
339
X
340
X
341
X
342
X
343
X
344
X
345
X
346
X
347
X
348
X
349
X
350
X
351
X
352
X
353
X
354
X
355
X
356
X
357
X
358
X
359
X
360
X
361
X
362
X

Benchmark bibtex

None

Ceiling

0.96.

Note that scores are relative to this ceiling.

Data: Marques2020_Ringach2002

Metric: modulation_ratio