Sample stimuli

sample 0 sample 1 sample 2 sample 3 sample 4 sample 5 sample 6 sample 7 sample 8 sample 9

How to use

from brainscore_vision import load_benchmark
benchmark = load_benchmark("Marques2020_Ringach2002-or_selective")
score = benchmark(my_model)

Model scores

Min Alignment Max Alignment

Rank

Model

Score

1
1.0
2
1.0
3
1.0
4
1.000
5
1.0
6
1.000
7
1.0
8
1.0
9
1.000
10
1.0
11
1.000
12
1.000
13
1.000
14
1.000
15
1.000
16
.999
17
.999
18
1.000
19
.999
20
.999
21
.999
22
.999
23
.999
24
.999
25
.999
26
.999
27
.999
28
.999
29
.999
30
.999
31
.999
32
.999
33
.999
34
.998
35
.998
36
.999
37
.998
38
.999
39
.998
40
.998
41
.998
42
.997
43
.997
44
.997
45
.996
46
.996
47
.996
48
.996
49
.996
50
.996
51
.996
52
.996
53
.996
54
.995
55
.996
56
.995
57
.995
58
.995
59
.995
60
.995
61
.995
62
.994
63
.995
64
.994
65
.994
66
.994
67
.993
68
.993
69
.992
70
.992
71
.991
72
.991
73
.991
74
.990
75
.990
76
.989
77
.988
78
.988
79
.986
80
.986
81
.986
82
.986
83
.986
84
.986
85
.986
86
.986
87
.986
88
.986
89
.986
90
.986
91
.986
92
.986
93
.986
94
.986
95
.986
96
.986
97
.986
98
.986
99
.986
100
.986
101
.986
102
.986
103
.986
104
.986
105
.986
106
.986
107
.986
108
.986
109
.985
110
.984
111
.984
112
.984
113
.984
114
.983
115
.982
116
.982
117
.981
118
.981
119
.981
120
.981
121
.980
122
.978
123
.977
124
.975
125
.975
126
.975
127
.975
128
.974
129
.974
130
.971
131
.971
132
.970
133
.970
134
.968
135
.966
136
.966
137
.965
138
.965
139
.963
140
.964
141
.964
142
.963
143
.962
144
.958
145
.958
146
.956
147
.954
148
.953
149
.952
150
.951
151
.949
152
.948
153
.946
154
.946
155
.945
156
.945
157
.942
158
.941
159
.941
160
.940
161
.939
162
.939
163
.939
164
.939
165
.937
166
.937
167
.936
168
.935
169
.935
170
.933
171
.933
172
.933
173
.931
174
.931
175
.931
176
.929
177
.928
178
.927
179
.927
180
.925
181
.925
182
.925
183
.925
184
.924
185
.923
186
.921
187
.919
188
.919
189
.917
190
.915
191
.914
192
.913
193
.912
194
.911
195
.911
196
.909
197
.909
198
.908
199
.907
200
.907
201
.906
202
.905
203
.905
204
.905
205
.901
206
.901
207
.901
208
.900
209
.900
210
.900
211
.900
212
.900
213
.900
214
.900
215
.898
216
.898
217
.897
218
.897
219
.897
220
.897
221
.896
222
.895
223
.895
224
.894
225
.893
226
.893
227
.892
228
.891
229
.890
230
.889
231
.889
232
.888
233
.886
234
.885
235
.884
236
.884
237
.883
238
.883
239
.880
240
.880
241
.879
242
.878
243
.877
244
.877
245
.876
246
.876
247
.873
248
.873
249
.871
250
.871
251
.870
252
.868
253
.868
254
.865
255
.862
256
.860
257
.860
258
.857
259
.855
260
.848
261
.846
262
.846
263
.846
264
.845
265
.844
266
.839
267
.839
268
.838
269
.838
270
.838
271
.835
272
.834
273
.834
274
.828
275
.828
276
.828
277
.827
278
.826
279
.826
280
.823
281
.821
282
.820
283
.820
284
.813
285
.813
286
.812
287
.805
288
.800
289
.797
290
.797
291
.797
292
.795
293
.795
294
.795
295
.795
296
.795
297
.793
298
.793
299
.787
300
.786
301
.782
302
.781
303
.780
304
.774
305
.771
306
.765
307
.754
308
.754
309
.748
310
.748
311
.747
312
.742
313
.736
314
.735
315
.734
316
.733
317
.718
318
.718
319
.711
320
.694
321
.692
322
.686
323
.681
324
.676
325
.662
326
.648
327
.643
328
.628
329
.607
330
.601
331
.557
332
.513
333
.481
334
.370
335
.322
336
.321
337
.274
338
.138
339
.052
340
X
341
X
342
X
343
X
344
X
345
X
346
X
347
X
348
X
349
X
350
X
351
X
352
X
353
X
354
X
355
X
356
X
357
X
358
X
359
X
360
X
361
X
362
X
363
X

Benchmark bibtex

None

Ceiling

0.99.

Note that scores are relative to this ceiling.

Data: Marques2020_Ringach2002

Metric: or_selective