Sample stimuli

sample 0 sample 1 sample 2 sample 3 sample 4 sample 5 sample 6 sample 7 sample 8 sample 9

How to use

from brainscore_vision import load_benchmark
benchmark = load_benchmark("ImageNet-C-blur-top1")
score = benchmark(my_model)

Model scores

Min Alignment Max Alignment

Rank

Model

Score

1
X
2
X
3
X
4
X
5
X
6
X
7
X
8
X
9
X
10
X
11
X
12
X
13
X
14
X
15
X
16
X
17
X
18
X
19
X
20
X
21
X
22
X
23
X
24
X
25
X
26
X
27
X
28
X
29
X
30
X
31
X
32
X
33
X
34
X
35
X
36
X
37
X
38
X
39
X
40
X
41
X
42
X
43
X
44
X
45
X
46
X
47
X
48
X
49
X
50
X
51
X
52
X
53
X
54
X
55
X
56
X
57
X
58
X
59
X
60
X
61
X
62
X
63
X
64
X
65
X
66
X
67
X
68
X
69
X
70
X
71
X
72
X
73
X
74
X
75
X
76
X
77
X
78
X
79
X
80
X
81
X
82
X
83
X
84
X
85
X
86
X
87
X
88
X
89
X
90
X
91
X
92
X
93
X
94
X
95
X
96
X
97
X
98
X
99
X
100
X
101
X
102
X
103
X
104
X
105
X
106
X
107
X
108
X
109
X
110
X
111
X
112
X
113
X
114
X
115
X
116
X
117
X
118
X
119
X
120
X
121
X
122
X
123
X
124
X
125
X
126
X
127
X
128
X
129
X
130
X
131
X
132
X
133
X
134
X
135
X
136
X
137
X
138
X
139
X
140
X
141
X
142
X
143
X
144
X
145
X
146
X
147
X
148
X
149
X
150
X
151
X
152
X
153
X
154
X
155
X
156
X
157
X
158
X
159
X
160
X
161
X
162
X
163
X
164
X
165
X
166
X
167
X
168
X
169
X
170
X
171
X
172
X
173
X
174
X
175
X
176
X
177
X
178
X
179
X
180
X
181
X
182
X
183
X
184
X
185
X
186
X
187
X
188
X
189
X
190
X
191
X
192
X
193
X
194
X
195
X
196
X
197
X
198
X
199
X
200
X
201
X
202
X
203
X
204
X
205
X
206
X
207
X
208
X
209
X
210
X
211
X
212
X
213
X
214
X
215
X
216
X
217
X
218
X
219
X
220
X
221
X
222
X
223
X
224
X
225
X
226
X
227
X
228
X
229
X
230
X
231
X
232
X
233
X
234
X
235
X
236
X
237
X
238
X
239
X
240
X
241
X
242
X
243
X
244
X
245
X
246
X
247
X
248
X
249
X
250
X
251
X
252
X
253
X
254
X
255
X
256
X
257
X
258
X
259
X
260
X
261
X
262
X
263
X
264
X
265
X
266
X
267
X
268
X
269
X
270
X
271
X
272
X
273
X
274
X
275
X
276
X
277
X
278
X
279
X
280
X
281
X
282
X
283
X
284
X
285
X
286
X
287
X
288
X
289
X
290
X
291
X
292
X
293
X
294
X
295
X
296
X
297
X
298
X
299
X
300
X
301
X
302
X
303
X
304
X
305
X
306
X
307
X
308
X
309
X
310
X
311
X
312
X
313
X
314
X
315
X
316
X
317
X
318
X
319
X
320
X
321
X
322
X
323
X
324
X
325
X
326
X
327
X
328
X
329
X
330
X
331
X
332
X
333
X
334
X
335
X
336
X
337
X
338
X
339
X
340
X
341
X
342
X
343
X
344
X
345
X
346
X
347
X
348
X
349
X
350
X
351
X
352
X
353
X
354
X
355
X
356
X
357
X
358
X
359
X
360
X
361
X
362
X
363
X
364
X
365
X
366
X
367
X
368
X
369
X
370
X
371
X
372
X
373
X
374
X
375
X
376
X
377
X
378
X
379
X
380
X
381
X
382
X

Benchmark bibtex

@ARTICLE{Hendrycks2019-di,
   title         = "Benchmarking Neural Network Robustness to Common Corruptions
                    and Perturbations",
   author        = "Hendrycks, Dan and Dietterich, Thomas",
   abstract      = "In this paper we establish rigorous benchmarks for image
                    classifier robustness. Our first benchmark, ImageNet-C,
                    standardizes and expands the corruption robustness topic,
                    while showing which classifiers are preferable in
                    safety-critical applications. Then we propose a new dataset
                    called ImageNet-P which enables researchers to benchmark a
                    classifier's robustness to common perturbations. Unlike
                    recent robustness research, this benchmark evaluates
                    performance on common corruptions and perturbations not
                    worst-case adversarial perturbations. We find that there are
                    negligible changes in relative corruption robustness from
                    AlexNet classifiers to ResNet classifiers. Afterward we
                    discover ways to enhance corruption and perturbation
                    robustness. We even find that a bypassed adversarial defense
                    provides substantial common perturbation robustness.
                    Together our benchmarks may aid future work toward networks
                    that robustly generalize.",
   month         =  mar,
   year          =  2019,
   archivePrefix = "arXiv",
   primaryClass  = "cs.LG",
   eprint        = "1903.12261",
   url           = "https://arxiv.org/abs/1903.12261"
}

Ceiling

1.00.

Note that scores are relative to this ceiling.

Data: ImageNet-C-blur

Metric: top1