Sample stimuli

sample 0 sample 1 sample 2 sample 3 sample 4 sample 5 sample 6 sample 7 sample 8 sample 9

How to use

from brainscore_vision import load_benchmark
benchmark = load_benchmark("Ferguson2024circle_line-value_delta")
score = benchmark(my_model)

Model scores

Min Alignment Max Alignment

Rank

Model

Score

1
1.0
2
1.0
3
1.0
4
1.0
5
1.0
6
1.0
7
1.0
8
1.0
9
1.0
10
1.0
11
1.0
12
1.0
13
1.0
14
1.0
15
.935
16
.935
17
.931
18
.931
19
.931
20
.931
21
.848
22
.848
23
.845
24
.845
25
.845
26
.845
27
.845
28
.845
29
.770
30
.767
31
.767
32
.767
33
.699
34
.696
35
.696
36
.696
37
.696
38
.696
39
.696
40
.634
41
.632
42
.632
43
.632
44
.632
45
.632
46
.573
47
.573
48
.573
49
.573
50
.573
51
.573
52
.573
53
.573
54
.573
55
.522
56
.522
57
.522
58
.522
59
.520
60
.520
61
.520
62
.520
63
.520
64
.520
65
.520
66
.520
67
.520
68
.520
69
.472
70
.472
71
.472
72
.472
73
.472
74
.430
75
.430
76
.428
77
.428
78
.428
79
.428
80
.428
81
.428
82
.428
83
.428
84
.428
85
.390
86
.389
87
.389
88
.389
89
.389
90
.389
91
.389
92
.389
93
.353
94
.353
95
.353
96
.353
97
.353
98
.353
99
.353
100
.353
101
.353
102
.353
103
.322
104
.322
105
.320
106
.320
107
.320
108
.320
109
.320
110
.320
111
.320
112
.320
113
.320
114
.320
115
.291
116
.291
117
.291
118
.291
119
.291
120
.291
121
.291
122
.264
123
.264
124
.264
125
.264
126
.264
127
.264
128
.264
129
.264
130
.264
131
.240
132
.240
133
.239
134
.239
135
.239
136
.239
137
.239
138
.239
139
.239
140
.239
141
.239
142
.217
143
.217
144
.217
145
.217
146
.217
147
.217
148
.198
149
.198
150
.197
151
.197
152
.197
153
.179
154
.179
155
.179
156
.179
157
.179
158
.162
159
.162
160
.162
161
.162
162
.162
163
.147
164
.147
165
.147
166
.147
167
.134
168
.121
169
.121
170
.121
171
.110
172
.110
173
.110
174
.100
175
.100
176
.091
177
.091
178
.082
179
.082
180
.082
181
.075
182
.075
183
.075
184
.068
185
.068
186
.068
187
.068
188
.068
189
.068
190
.068
191
.068
192
.062
193
.062
194
.046
195
.046
196
.046
197
.046
198
.046
199
.034
200
.034
201
.034
202
.031
203
.021
204
.014
205
X

Benchmark bibtex

        @misc{ferguson_ngo_lee_dicarlo_schrimpf_2024,
         title={How Well is Visual Search Asymmetry predicted by a Binary-Choice, Rapid, Accuracy-based Visual-search, Oddball-detection (BRAVO) task?},
         url={osf.io/5ba3n},
         DOI={10.17605/OSF.IO/5BA3N},
         publisher={OSF},
         author={Ferguson, Michael E, Jr and Ngo, Jerry and Lee, Michael and DiCarlo, James and Schrimpf, Martin},
         year={2024},
         month={Jun}
}

Ceiling

0.88.

Note that scores are relative to this ceiling.

Data: Ferguson2024circle_line

Metric: value_delta