Sample stimuli

sample 0 sample 1 sample 2 sample 3 sample 4 sample 5 sample 6 sample 7 sample 8 sample 9

How to use

from brainscore_vision import load_benchmark
benchmark = load_benchmark("Ferguson2024round_v-value_delta")
score = benchmark(my_model)

Model scores

Min Alignment Max Alignment

Rank

Model

Score

1
1.0
2
1.0
3
1.0
4
1.0
5
1.0
6
1.0
7
1.0
8
1.0
9
1.0
10
1.0
11
1.0
12
1.0
13
1.0
14
1.0
15
1.0
16
1.0
17
1.0
18
1.0
19
1.0
20
1.000
21
1.000
22
1.000
23
1.000
24
1.000
25
1.000
26
1.000
27
1.000
28
1.000
29
1.000
30
1.000
31
.924
32
.924
33
.924
34
.924
35
.924
36
.924
37
.924
38
.905
39
.905
40
.905
41
.905
42
.836
43
.836
44
.836
45
.836
46
.836
47
.836
48
.836
49
.820
50
.820
51
.820
52
.820
53
.820
54
.820
55
.820
56
.820
57
.757
58
.757
59
.757
60
.757
61
.757
62
.757
63
.742
64
.742
65
.742
66
.742
67
.686
68
.686
69
.672
70
.672
71
.672
72
.672
73
.672
74
.672
75
.621
76
.621
77
.621
78
.621
79
.621
80
.621
81
.621
82
.621
83
.621
84
.609
85
.609
86
.609
87
.609
88
.609
89
.609
90
.609
91
.609
92
.562
93
.562
94
.562
95
.551
96
.551
97
.551
98
.551
99
.551
100
.551
101
.551
102
.551
103
.551
104
.509
105
.509
106
.509
107
.509
108
.509
109
.499
110
.499
111
.499
112
.461
113
.461
114
.461
115
.461
116
.417
117
.417
118
.417
119
.417
120
.417
121
.409
122
.409
123
.409
124
.409
125
.409
126
.409
127
.409
128
.409
129
.409
130
.409
131
.378
132
.378
133
.378
134
.378
135
.378
136
.370
137
.370
138
.370
139
.370
140
.370
141
.370
142
.370
143
.370
144
.342
145
.342
146
.342
147
.335
148
.335
149
.310
150
.304
151
.304
152
.281
153
.281
154
.275
155
.275
156
.275
157
.275
158
.275
159
.254
160
.254
161
.254
162
.249
163
.249
164
.249
165
.230
166
.230
167
.230
168
.230
169
.230
170
.225
171
.225
172
.225
173
.225
174
.225
175
.225
176
.225
177
.208
178
.208
179
.204
180
.204
181
.204
182
.189
183
.185
184
.185
185
.185
186
.171
187
.155
188
.155
189
.140
190
.137
191
.137
192
.124
193
.102
194
.083
195
.076
196
.070
197
.068
198
.068
199
.068
200
.062
201
.035
202
.034
203
.025
204
.025
205
.023

Benchmark bibtex

        @misc{ferguson_ngo_lee_dicarlo_schrimpf_2024,
         title={How Well is Visual Search Asymmetry predicted by a Binary-Choice, Rapid, Accuracy-based Visual-search, Oddball-detection (BRAVO) task?},
         url={osf.io/5ba3n},
         DOI={10.17605/OSF.IO/5BA3N},
         publisher={OSF},
         author={Ferguson, Michael E, Jr and Ngo, Jerry and Lee, Michael and DiCarlo, James and Schrimpf, Martin},
         year={2024},
         month={Jun}
}

Ceiling

0.85.

Note that scores are relative to this ceiling.

Data: Ferguson2024round_v

Metric: value_delta