Sample stimuli

sample 0 sample 1 sample 2 sample 3 sample 4 sample 5 sample 6 sample 7 sample 8 sample 9

How to use

from brainscore_vision import load_benchmark
benchmark = load_benchmark("Ferguson2024lle-value_delta")
score = benchmark(my_model)

Model scores

Min Alignment Max Alignment

Rank

Model

Score

1
1.0
2
1.0
3
1.0
4
1.0
5
1.0
6
1.0
7
1.0
8
1.0
9
1.0
10
1.0
11
1.0
12
1.0
13
1.0
14
1.0
15
1.0
16
1.0
17
1.0
18
1.0
19
1.0
20
1.0
21
1.0
22
1.0
23
1.0
24
1.0
25
1.0
26
1.0
27
1.0
28
1.0
29
1.0
30
1.0
31
.967
32
.967
33
.967
34
.911
35
.911
36
.911
37
.911
38
.911
39
.911
40
.911
41
.875
42
.875
43
.875
44
.875
45
.875
46
.825
47
.825
48
.825
49
.825
50
.825
51
.825
52
.793
53
.793
54
.793
55
.747
56
.747
57
.747
58
.747
59
.747
60
.718
61
.718
62
.718
63
.718
64
.718
65
.676
66
.676
67
.676
68
.650
69
.650
70
.650
71
.650
72
.612
73
.612
74
.612
75
.612
76
.588
77
.554
78
.554
79
.554
80
.554
81
.554
82
.532
83
.532
84
.532
85
.532
86
.532
87
.532
88
.532
89
.532
90
.502
91
.502
92
.502
93
.502
94
.502
95
.502
96
.502
97
.502
98
.482
99
.482
100
.454
101
.454
102
.454
103
.454
104
.454
105
.436
106
.411
107
.411
108
.411
109
.411
110
.411
111
.411
112
.411
113
.411
114
.411
115
.395
116
.372
117
.372
118
.372
119
.372
120
.372
121
.358
122
.358
123
.358
124
.358
125
.337
126
.337
127
.337
128
.337
129
.337
130
.337
131
.337
132
.337
133
.337
134
.324
135
.324
136
.305
137
.305
138
.305
139
.305
140
.293
141
.276
142
.276
143
.276
144
.276
145
.276
146
.276
147
.265
148
.250
149
.250
150
.250
151
.226
152
.226
153
.226
154
.226
155
.205
156
.205
157
.205
158
.205
159
.205
160
.205
161
.186
162
.178
163
.168
164
.168
165
.168
166
.168
167
.161
168
.152
169
.152
170
.152
171
.152
172
.146
173
.138
174
.138
175
.138
176
.125
177
.125
178
.125
179
.125
180
.125
181
.113
182
.113
183
.113
184
.113
185
.108
186
.108
187
.092
188
.069
189
.069
190
.069
191
.069
192
.069
193
.069
194
.062
195
.062
196
.062
197
.056
198
.051
199
.051
200
.046
201
.046
202
.025
203
.023
204
X
205
X

Benchmark bibtex

        @misc{ferguson_ngo_lee_dicarlo_schrimpf_2024,
         title={How Well is Visual Search Asymmetry predicted by a Binary-Choice, Rapid, Accuracy-based Visual-search, Oddball-detection (BRAVO) task?},
         url={osf.io/5ba3n},
         DOI={10.17605/OSF.IO/5BA3N},
         publisher={OSF},
         author={Ferguson, Michael E, Jr and Ngo, Jerry and Lee, Michael and DiCarlo, James and Schrimpf, Martin},
         year={2024},
         month={Jun}
}

Ceiling

0.83.

Note that scores are relative to this ceiling.

Data: Ferguson2024lle

Metric: value_delta