Sample stimuli

sample 0 sample 1 sample 2 sample 3 sample 4 sample 5 sample 6 sample 7 sample 8 sample 9

How to use

from brainscore_vision import load_benchmark
benchmark = load_benchmark("Ferguson2024eighth-value_delta")
score = benchmark(my_model)

Model scores

Min Alignment Max Alignment

Rank

Model

Score

1
1.0
2
1.0
3
1.0
4
.974
5
.974
6
.974
7
.951
8
.882
9
.882
10
.882
11
.882
12
.882
13
.882
14
.882
15
.861
16
.799
17
.780
18
.723
19
.723
20
.723
21
.706
22
.655
23
.655
24
.655
25
.655
26
.655
27
.655
28
.593
29
.593
30
.579
31
.537
32
.537
33
.524
34
.486
35
.486
36
.486
37
.486
38
.486
39
.486
40
.486
41
.475
42
.440
43
.399
44
.399
45
.399
46
.399
47
.361
48
.361
49
.361
50
.361
51
.361
52
.361
53
.361
54
.361
55
.361
56
.361
57
.327
58
.327
59
.327
60
.327
61
.327
62
.327
63
.296
64
.296
65
.296
66
.296
67
.296
68
.268
69
.268
70
.268
71
.243
72
.243
73
.243
74
.220
75
.220
76
.220
77
.220
78
.199
79
.199
80
.199
81
.199
82
.199
83
.180
84
.180
85
.180
86
.180
87
.163
88
.163
89
.148
90
.148
91
.148
92
.148
93
.148
94
.148
95
.148
96
.134
97
.134
98
.134
99
.134
100
.134
101
.134
102
.134
103
.121
104
.121
105
.121
106
.121
107
.121
108
.121
109
.121
110
.121
111
.110
112
.110
113
.110
114
.110
115
.110
116
.110
117
.110
118
.110
119
.099
120
.099
121
.099
122
.099
123
.099
124
.099
125
.099
126
.099
127
.099
128
.099
129
.090
130
.081
131
.081
132
.081
133
.081
134
.081
135
.081
136
.081
137
.081
138
.081
139
.074
140
.067
141
.067
142
.067
143
.067
144
.067
145
.067
146
.060
147
.060
148
.060
149
.060
150
.055
151
.055
152
.055
153
.050
154
.050
155
.050
156
.045
157
.041
158
.041
159
.041
160
.041
161
.041
162
.037
163
.037
164
.037
165
.037
166
.037
167
.037
168
.033
169
.033
170
.033
171
.030
172
.027
173
.027
174
.027
175
.027
176
.027
177
.025
178
.025
179
.025
180
.025
181
.025
182
.022
183
.022
184
.022
185
.020
186
.020
187
.020
188
.018
189
.017
190
.017
191
.017
192
.017
193
.015
194
.014
195
.011
196
.011
197
.011
198
.010
199
.010
200
.010
201
.010
202
.008
203
.008
204
.006
205
X

Benchmark bibtex

        @misc{ferguson_ngo_lee_dicarlo_schrimpf_2024,
         title={How Well is Visual Search Asymmetry predicted by a Binary-Choice, Rapid, Accuracy-based Visual-search, Oddball-detection (BRAVO) task?},
         url={osf.io/5ba3n},
         DOI={10.17605/OSF.IO/5BA3N},
         publisher={OSF},
         author={Ferguson, Michael E, Jr and Ngo, Jerry and Lee, Michael and DiCarlo, James and Schrimpf, Martin},
         year={2024},
         month={Jun}
}

Ceiling

0.85.

Note that scores are relative to this ceiling.

Data: Ferguson2024eighth

Metric: value_delta