Sample stimuli

sample 0 sample 1 sample 2 sample 3 sample 4 sample 5 sample 6 sample 7 sample 8 sample 9

How to use

from brainscore_vision import load_benchmark
benchmark = load_benchmark("Ferguson2024gray_easy-value_delta")
score = benchmark(my_model)

Model scores

Min Alignment Max Alignment

Rank

Model

Score

1
1.0
2
1.0
3
1.0
4
1.0
5
1.0
6
.973
7
.973
8
.973
9
.973
10
.882
11
.882
12
.882
13
.882
14
.882
15
.882
16
.882
17
.845
18
.845
19
.845
20
.845
21
.845
22
.845
23
.845
24
.845
25
.845
26
.845
27
.845
28
.845
29
.845
30
.845
31
.845
32
.845
33
.845
34
.845
35
.845
36
.845
37
.845
38
.845
39
.845
40
.800
41
.800
42
.767
43
.767
44
.767
45
.725
46
.725
47
.725
48
.725
49
.695
50
.695
51
.695
52
.695
53
.658
54
.630
55
.630
56
.630
57
.630
58
.630
59
.596
60
.596
61
.596
62
.572
63
.572
64
.572
65
.541
66
.541
67
.541
68
.518
69
.518
70
.518
71
.518
72
.518
73
.518
74
.518
75
.490
76
.490
77
.470
78
.470
79
.470
80
.470
81
.470
82
.470
83
.470
84
.470
85
.445
86
.445
87
.426
88
.426
89
.426
90
.426
91
.426
92
.426
93
.426
94
.426
95
.403
96
.403
97
.387
98
.351
99
.332
100
.332
101
.332
102
.318
103
.318
104
.318
105
.318
106
.318
107
.288
108
.288
109
.288
110
.288
111
.288
112
.288
113
.261
114
.261
115
.261
116
.247
117
.247
118
.237
119
.237
120
.237
121
.237
122
.237
123
.215
124
.215
125
.215
126
.215
127
.195
128
.195
129
.184
130
.177
131
.177
132
.177
133
.160
134
.160
135
.160
136
.160
137
.160
138
.160
139
.160
140
.152
141
.152
142
.145
143
.145
144
.145
145
.138
146
.132
147
.132
148
.125
149
.120
150
.120
151
.120
152
.108
153
.108
154
.108
155
.108
156
.098
157
.098
158
.098
159
.098
160
.089
161
.089
162
.089
163
.089
164
.089
165
.089
166
.081
167
.081
168
.081
169
.076
170
.073
171
.073
172
.073
173
.073
174
.073
175
.073
176
.073
177
.066
178
.066
179
.066
180
.060
181
.060
182
.060
183
.060
184
.060
185
.060
186
.060
187
.055
188
.055
189
.055
190
.055
191
.052
192
.050
193
.050
194
.050
195
.041
196
.041
197
.041
198
.037
199
.034
200
.034
201
.028
202
.025
203
.019

Benchmark bibtex

        @misc{ferguson_ngo_lee_dicarlo_schrimpf_2024,
         title={How Well is Visual Search Asymmetry predicted by a Binary-Choice, Rapid, Accuracy-based Visual-search, Oddball-detection (BRAVO) task?},
         url={osf.io/5ba3n},
         DOI={10.17605/OSF.IO/5BA3N},
         publisher={OSF},
         author={Ferguson, Michael E, Jr and Ngo, Jerry and Lee, Michael and DiCarlo, James and Schrimpf, Martin},
         year={2024},
         month={Jun}
}

Ceiling

0.91.

Note that scores are relative to this ceiling.

Data: Ferguson2024gray_easy

Metric: value_delta