Sample stimuli

sample 0 sample 1 sample 2 sample 3 sample 4 sample 5 sample 6 sample 7 sample 8 sample 9

How to use

from brainscore_vision import load_benchmark
benchmark = load_benchmark("Ferguson2024gray_hard-value_delta")
score = benchmark(my_model)

Model scores

Min Alignment Max Alignment

Rank

Model

Score

1
1.0
2
1.0
3
1.0
4
1.0
5
1.0
6
1.0
7
1.0
8
1.0
9
1.0
10
1.0
11
1.0
12
1.0
13
1.0
14
1.0
15
1.0
16
.971
17
.971
18
.971
19
.942
20
.942
21
.942
22
.942
23
.942
24
.942
25
.942
26
.942
27
.942
28
.942
29
.942
30
.942
31
.942
32
.942
33
.883
34
.883
35
.883
36
.883
37
.883
38
.855
39
.855
40
.855
41
.855
42
.802
43
.802
44
.777
45
.777
46
.777
47
.777
48
.777
49
.777
50
.777
51
.728
52
.728
53
.728
54
.728
55
.728
56
.728
57
.728
58
.706
59
.706
60
.706
61
.706
62
.706
63
.706
64
.662
65
.662
66
.641
67
.641
68
.641
69
.641
70
.641
71
.641
72
.641
73
.641
74
.641
75
.641
76
.601
77
.601
78
.601
79
.583
80
.583
81
.583
82
.583
83
.583
84
.583
85
.583
86
.546
87
.546
88
.529
89
.529
90
.496
91
.496
92
.481
93
.481
94
.481
95
.481
96
.481
97
.481
98
.451
99
.437
100
.437
101
.437
102
.437
103
.437
104
.437
105
.437
106
.437
107
.437
108
.437
109
.437
110
.437
111
.437
112
.410
113
.410
114
.410
115
.397
116
.397
117
.397
118
.397
119
.397
120
.397
121
.397
122
.397
123
.397
124
.397
125
.397
126
.397
127
.372
128
.372
129
.361
130
.361
131
.361
132
.361
133
.338
134
.328
135
.328
136
.307
137
.298
138
.298
139
.298
140
.298
141
.279
142
.270
143
.270
144
.270
145
.270
146
.270
147
.270
148
.270
149
.270
150
.270
151
.270
152
.253
153
.246
154
.246
155
.246
156
.246
157
.246
158
.230
159
.223
160
.223
161
.223
162
.223
163
.223
164
.203
165
.203
166
.203
167
.190
168
.184
169
.184
170
.184
171
.184
172
.167
173
.167
174
.167
175
.167
176
.167
177
.157
178
.152
179
.152
180
.152
181
.152
182
.152
183
.138
184
.138
185
.126
186
.126
187
.126
188
.126
189
.114
190
.114
191
.104
192
.104
193
.086
194
.078
195
.078
196
.073
197
.071
198
.064
199
.064
200
.064
201
.048
202
.048
203
.033
204
.033
205
.020

Benchmark bibtex

        @misc{ferguson_ngo_lee_dicarlo_schrimpf_2024,
         title={How Well is Visual Search Asymmetry predicted by a Binary-Choice, Rapid, Accuracy-based Visual-search, Oddball-detection (BRAVO) task?},
         url={osf.io/5ba3n},
         DOI={10.17605/OSF.IO/5BA3N},
         publisher={OSF},
         author={Ferguson, Michael E, Jr and Ngo, Jerry and Lee, Michael and DiCarlo, James and Schrimpf, Martin},
         year={2024},
         month={Jun}
}

Ceiling

0.86.

Note that scores are relative to this ceiling.

Data: Ferguson2024gray_hard

Metric: value_delta