Sample stimuli

sample 0 sample 1 sample 2 sample 3 sample 4 sample 5 sample 6 sample 7 sample 8 sample 9

How to use

from brainscore_vision import load_benchmark
benchmark = load_benchmark("Ferguson2024convergence-value_delta")
score = benchmark(my_model)

Model scores

Min Alignment Max Alignment

Rank

Model

Score

1
1.0
2
1.0
3
1.0
4
1.0
5
1.0
6
1.0
7
1.0
8
1.0
9
1.0
10
1.0
11
1.0
12
1.0
13
1.0
14
1.0
15
1.0
16
1.0
17
.985
18
.985
19
.985
20
.925
21
.925
22
.894
23
.839
24
.839
25
.839
26
.839
27
.839
28
.811
29
.811
30
.762
31
.762
32
.762
33
.762
34
.762
35
.762
36
.736
37
.736
38
.736
39
.691
40
.691
41
.691
42
.691
43
.691
44
.691
45
.691
46
.691
47
.691
48
.667
49
.667
50
.667
51
.667
52
.627
53
.627
54
.627
55
.627
56
.627
57
.627
58
.627
59
.627
60
.627
61
.627
62
.627
63
.627
64
.627
65
.627
66
.627
67
.627
68
.606
69
.606
70
.569
71
.569
72
.569
73
.569
74
.569
75
.569
76
.569
77
.569
78
.549
79
.549
80
.549
81
.516
82
.516
83
.516
84
.516
85
.516
86
.516
87
.516
88
.516
89
.516
90
.468
91
.468
92
.468
93
.468
94
.468
95
.468
96
.468
97
.452
98
.425
99
.425
100
.425
101
.425
102
.425
103
.425
104
.425
105
.425
106
.385
107
.385
108
.385
109
.385
110
.385
111
.385
112
.385
113
.385
114
.385
115
.385
116
.385
117
.385
118
.385
119
.349
120
.349
121
.349
122
.349
123
.317
124
.317
125
.317
126
.317
127
.317
128
.317
129
.317
130
.317
131
.317
132
.317
133
.317
134
.317
135
.306
136
.288
137
.288
138
.288
139
.288
140
.288
141
.288
142
.261
143
.261
144
.261
145
.261
146
.252
147
.237
148
.237
149
.237
150
.237
151
.237
152
.237
153
.215
154
.215
155
.215
156
.215
157
.215
158
.215
159
.215
160
.195
161
.195
162
.195
163
.195
164
.195
165
.195
166
.195
167
.195
168
.195
169
.177
170
.177
171
.177
172
.177
173
.177
174
.177
175
.171
176
.160
177
.155
178
.145
179
.145
180
.141
181
.132
182
.132
183
.132
184
.132
185
.132
186
.120
187
.109
188
.109
189
.099
190
.089
191
.081
192
.074
193
.071
194
.067
195
.055
196
.050
197
.050
198
.041
199
.037
200
.037
201
.028
202
.013
203
X

Benchmark bibtex

        @misc{ferguson_ngo_lee_dicarlo_schrimpf_2024,
         title={How Well is Visual Search Asymmetry predicted by a Binary-Choice, Rapid, Accuracy-based Visual-search, Oddball-detection (BRAVO) task?},
         url={osf.io/5ba3n},
         DOI={10.17605/OSF.IO/5BA3N},
         publisher={OSF},
         author={Ferguson, Michael E, Jr and Ngo, Jerry and Lee, Michael and DiCarlo, James and Schrimpf, Martin},
         year={2024},
         month={Jun}
}

Ceiling

0.86.

Note that scores are relative to this ceiling.

Data: Ferguson2024convergence

Metric: value_delta