Sample stimuli










How to use
from brainscore_vision import load_benchmark benchmark = load_benchmark("tong.Coggan2024_fMRI.V2-rdm") score = benchmark(my_model)
Model scores
Min Alignment
Max Alignment
Rank |
Model |
Score |
---|---|---|
1 |
.630
|
|
2 |
.626
|
|
3 |
.578
|
|
4 |
.571
|
|
5 |
.570
|
|
6 |
.492
|
|
7 |
.455
|
|
8 |
.438
|
|
9 |
.407
|
|
10 |
.383
|
|
11 |
.369
|
|
12 |
.313
|
|
13 |
.311
|
|
14 |
.278
|
|
15 |
.269
|
|
16 |
.268
|
|
17 |
.262
|
|
18 |
.255
|
|
19 |
.254
|
|
20 |
.247
|
|
21 |
.231
|
|
22 |
.227
|
|
23 |
.220
|
|
24 |
.216
|
|
25 |
.212
|
|
26 |
.206
|
|
27 |
.206
|
|
28 |
.203
|
|
29 |
.201
|
|
30 |
.199
|
|
31 |
.194
|
|
32 |
.189
|
|
33 |
.181
|
|
34 |
.178
|
|
35 |
.178
|
|
36 |
.175
|
|
37 |
.172
|
|
38 |
.170
|
|
39 |
.167
|
|
40 |
.164
|
|
41 |
.163
|
|
42 |
.159
|
|
43 |
.149
|
|
44 |
.147
|
|
45 |
.143
|
|
46 |
.142
|
|
47 |
.141
|
|
48 |
.138
|
|
49 |
.137
|
|
50 |
.135
|
|
51 |
.133
|
|
52 |
.130
|
|
53 |
.121
|
|
54 |
.121
|
|
55 |
.121
|
|
56 |
.121
|
|
57 |
.121
|
|
58 |
.119
|
|
59 |
.118
|
|
60 |
.117
|
|
61 |
.116
|
|
62 |
.112
|
|
63 |
.111
|
|
64 |
.107
|
|
65 |
.107
|
|
66 |
.106
|
|
67 |
.105
|
|
68 |
.101
|
|
69 |
.100
|
|
70 |
.100
|
|
71 |
.097
|
|
72 |
.097
|
|
73 |
.096
|
|
74 |
.094
|
|
75 |
.092
|
|
76 |
.089
|
|
77 |
.087
|
|
78 |
.086
|
|
79 |
.085
|
|
80 |
.084
|
|
81 |
.080
|
|
82 |
.078
|
|
83 |
.075
|
|
84 |
.074
|
|
85 |
.074
|
|
86 |
.073
|
|
87 |
.073
|
|
88 |
.072
|
|
89 |
.069
|
|
90 |
.067
|
|
91 |
.063
|
|
92 |
.061
|
|
93 |
.061
|
|
94 |
.061
|
|
95 |
.059
|
|
96 |
.058
|
|
97 |
.057
|
|
98 |
.057
|
|
99 |
.056
|
|
100 |
.056
|
|
101 |
.055
|
|
102 |
.053
|
|
103 |
.052
|
|
104 |
.051
|
|
105 |
.048
|
|
106 |
.047
|
|
107 |
.044
|
|
108 |
.043
|
|
109 |
.043
|
|
110 |
.041
|
|
111 |
.040
|
|
112 |
.040
|
|
113 |
.038
|
|
114 |
.038
|
|
115 |
.037
|
|
116 |
.037
|
|
117 |
.037
|
|
118 |
.037
|
|
119 |
.036
|
|
120 |
.036
|
|
121 |
.036
|
|
122 |
.036
|
|
123 |
.035
|
|
124 |
.034
|
|
125 |
.033
|
|
126 |
.032
|
|
127 |
.031
|
|
128 |
.030
|
|
129 |
.030
|
|
130 |
.029
|
|
131 |
.028
|
|
132 |
.027
|
|
133 |
.026
|
|
134 |
.026
|
|
135 |
.025
|
|
136 |
.025
|
|
137 |
.025
|
|
138 |
.024
|
|
139 |
.024
|
|
140 |
.023
|
|
141 |
.023
|
|
142 |
.023
|
|
143 |
.022
|
|
144 |
.021
|
|
145 |
.021
|
|
146 |
.020
|
|
147 |
.018
|
|
148 |
.016
|
|
149 |
.014
|
|
150 |
.014
|
|
151 |
.014
|
|
152 |
.013
|
|
153 |
.011
|
|
154 |
.010
|
|
155 |
.010
|
|
156 |
.010
|
|
157 |
.009
|
|
158 |
.008
|
|
159 |
.005
|
|
160 |
.004
|
|
161 |
.003
|
|
162 |
.003
|
|
163 |
.003
|
|
164 |
.003
|
|
165 |
.002
|
|
166 |
.002
|
|
167 |
.001
|
|
168 |
.001
|
|
169 |
.001
|
|
170 |
.001
|
|
171 |
.001
|
|
172 |
.000
|
|
173 |
.000
|
|
174 |
.000
|
|
175 |
.000
|
|
176 |
.000
|
|
177 |
.000
|
|
178 |
.000
|
|
179 |
.001
|
|
180 |
.001
|
|
181 |
.001
|
|
182 |
.001
|
|
183 |
.002
|
|
184 |
.002
|
|
185 |
.003
|
|
186 |
.003
|
|
187 |
.005
|
|
188 |
X
|
|
189 |
X
|
|
190 |
X
|
|
191 |
X
|
|
192 |
X
|
|
193 |
X
|
|
194 |
X
|
|
195 |
X
|
|
196 |
X
|
|
197 |
X
|
|
198 |
X
|
|
199 |
X
|
|
200 |
X
|
|
201 |
X
|
|
202 |
X
|
|
203 |
X
|
|
204 |
X
|
Benchmark bibtex
@inproceedings{santurkar2019computer, title={Computer Vision with a Single (Robust) Classifier}, author={Shibani Santurkar and Dimitris Tsipras and Brandon Tran and Andrew Ilyas and Logan Engstrom and Aleksander Madry}, booktitle={ArXiv preprint arXiv:1906.09453}, year={2019} }
Ceiling
Not availableData: tong.Coggan2024_fMRI.V2
Metric: rdm