Sample stimuli










How to use
from brainscore_vision import load_benchmark benchmark = load_benchmark("Maniquet2024-confusion_similarity") score = benchmark(my_model)
Model scores
Min Alignment
Max Alignment
Rank |
Model |
Score |
---|---|---|
1 |
.928
|
|
2 |
.928
|
|
3 |
.917
|
|
4 |
.892
|
|
5 |
.873
|
|
6 |
.873
|
|
7 |
.858
|
|
8 |
.850
|
|
9 |
.832
|
|
10 |
.832
|
|
11 |
.832
|
|
12 |
.832
|
|
13 |
.831
|
|
14 |
.826
|
|
15 |
.823
|
|
16 |
.820
|
|
17 |
.813
|
|
18 |
.813
|
|
19 |
.808
|
|
20 |
.808
|
|
21 |
.808
|
|
22 |
.804
|
|
23 |
.803
|
|
24 |
.798
|
|
25 |
.798
|
|
26 |
.794
|
|
27 |
.793
|
|
28 |
.785
|
|
29 |
.763
|
|
30 |
.759
|
|
31 |
.759
|
|
32 |
.753
|
|
33 |
.753
|
|
34 |
.753
|
|
35 |
.751
|
|
36 |
.751
|
|
37 |
.748
|
|
38 |
.743
|
|
39 |
.738
|
|
40 |
.738
|
|
41 |
.737
|
|
42 |
.736
|
|
43 |
.729
|
|
44 |
.708
|
|
45 |
.708
|
|
46 |
.679
|
|
47 |
.677
|
|
48 |
.669
|
|
49 |
.665
|
|
50 |
.662
|
|
51 |
.651
|
|
52 |
.645
|
|
53 |
.640
|
|
54 |
.632
|
|
55 |
.632
|
|
56 |
.630
|
|
57 |
.626
|
|
58 |
.603
|
|
59 |
.600
|
|
60 |
.598
|
|
61 |
.586
|
|
62 |
.571
|
|
63 |
.562
|
|
64 |
.562
|
|
65 |
.559
|
|
66 |
.555
|
|
67 |
.555
|
|
68 |
.553
|
|
69 |
.553
|
|
70 |
.547
|
|
71 |
.546
|
|
72 |
.540
|
|
73 |
.538
|
|
74 |
.535
|
|
75 |
.533
|
|
76 |
.533
|
|
77 |
.530
|
|
78 |
.529
|
|
79 |
.524
|
|
80 |
.520
|
|
81 |
.520
|
|
82 |
.516
|
|
83 |
.513
|
|
84 |
.508
|
|
85 |
.508
|
|
86 |
.502
|
|
87 |
.500
|
|
88 |
.498
|
|
89 |
.498
|
|
90 |
.496
|
|
91 |
.496
|
|
92 |
.495
|
|
93 |
.490
|
|
94 |
.488
|
|
95 |
.487
|
|
96 |
.486
|
|
97 |
.480
|
|
98 |
.473
|
|
99 |
.473
|
|
100 |
.472
|
|
101 |
.460
|
|
102 |
.453
|
|
103 |
.450
|
|
104 |
.444
|
|
105 |
.438
|
|
106 |
.436
|
|
107 |
.436
|
|
108 |
.435
|
|
109 |
.428
|
|
110 |
.424
|
|
111 |
.419
|
|
112 |
.418
|
|
113 |
.418
|
|
114 |
.416
|
|
115 |
.412
|
|
116 |
.410
|
|
117 |
.407
|
|
118 |
.407
|
|
119 |
.395
|
|
120 |
.392
|
|
121 |
.381
|
|
122 |
.375
|
|
123 |
.371
|
|
124 |
.365
|
|
125 |
.365
|
|
126 |
.362
|
|
127 |
.358
|
|
128 |
.351
|
|
129 |
.348
|
|
130 |
.348
|
|
131 |
.346
|
|
132 |
.345
|
|
133 |
.341
|
|
134 |
.341
|
|
135 |
.341
|
|
136 |
.340
|
|
137 |
.337
|
|
138 |
.326
|
|
139 |
.326
|
|
140 |
.324
|
|
141 |
.324
|
|
142 |
.323
|
|
143 |
.322
|
|
144 |
.314
|
|
145 |
.305
|
|
146 |
.302
|
|
147 |
.298
|
|
148 |
.289
|
|
149 |
.287
|
|
150 |
.284
|
|
151 |
.280
|
|
152 |
.277
|
|
153 |
.270
|
|
154 |
.262
|
|
155 |
.255
|
|
156 |
.247
|
|
157 |
.239
|
|
158 |
.238
|
|
159 |
.232
|
|
160 |
.227
|
|
161 |
.220
|
|
162 |
.212
|
|
163 |
.206
|
|
164 |
.197
|
|
165 |
.195
|
|
166 |
.195
|
|
167 |
.194
|
|
168 |
.189
|
|
169 |
.186
|
|
170 |
.167
|
|
171 |
.164
|
|
172 |
.162
|
|
173 |
.156
|
|
174 |
.138
|
|
175 |
.123
|
|
176 |
.106
|
|
177 |
.100
|
|
178 |
.098
|
|
179 |
.092
|
|
180 |
.062
|
|
181 |
.019
|
|
182 |
-0.002
|
|
183 |
-0.009
|
|
184 |
-0.065
|
|
185 |
X
|
|
186 |
X
|
|
187 |
X
|
|
188 |
X
|
|
189 |
X
|
|
190 |
X
|
|
191 |
X
|
|
192 |
X
|
|
193 |
X
|
|
194 |
X
|
|
195 |
X
|
|
196 |
X
|
|
197 |
X
|
|
198 |
X
|
|
199 |
X
|
|
200 |
X
|
|
201 |
X
|
|
202 |
X
|
|
203 |
X
|
|
204 |
X
|
|
205 |
X
|
|
206 |
X
|
|
207 |
X
|
|
208 |
X
|
|
209 |
X
|
|
210 |
X
|
|
211 |
X
|
|
212 |
X
|
|
213 |
X
|
|
214 |
X
|
|
215 |
X
|
|
216 |
X
|
|
217 |
X
|
Benchmark bibtex
@article {Maniquet2024.04.02.587669, author = {Maniquet, Tim and de Beeck, Hans Op and Costantino, Andrea Ivan}, title = {Recurrent issues with deep neural network models of visual recognition}, elocation-id = {2024.04.02.587669}, year = {2024}, doi = {10.1101/2024.04.02.587669}, publisher = {Cold Spring Harbor Laboratory}, URL = {https://www.biorxiv.org/content/early/2024/04/10/2024.04.02.587669}, eprint = {https://www.biorxiv.org/content/early/2024/04/10/2024.04.02.587669.full.pdf}, journal = {bioRxiv} }
Ceiling
Not availableData: Maniquet2024
Metric: confusion_similarity