Sample stimuli










How to use
from brainscore_vision import load_benchmark benchmark = load_benchmark("tong.Coggan2024_fMRI.IT-rdm") score = benchmark(my_model)
Model scores
Min Alignment
Max Alignment
Rank |
Model |
Score |
---|---|---|
1 |
1.1
|
|
2 |
.932
|
|
3 |
.927
|
|
4 |
.885
|
|
5 |
.874
|
|
6 |
.871
|
|
7 |
.851
|
|
8 |
.834
|
|
9 |
.833
|
|
10 |
.827
|
|
11 |
.778
|
|
12 |
.765
|
|
13 |
.744
|
|
14 |
.733
|
|
15 |
.705
|
|
16 |
.700
|
|
17 |
.697
|
|
18 |
.689
|
|
19 |
.677
|
|
20 |
.674
|
|
21 |
.668
|
|
22 |
.656
|
|
23 |
.651
|
|
24 |
.642
|
|
25 |
.640
|
|
26 |
.639
|
|
27 |
.632
|
|
28 |
.632
|
|
29 |
.630
|
|
30 |
.620
|
|
31 |
.614
|
|
32 |
.613
|
|
33 |
.612
|
|
34 |
.607
|
|
35 |
.586
|
|
36 |
.577
|
|
37 |
.568
|
|
38 |
.567
|
|
39 |
.565
|
|
40 |
.559
|
|
41 |
.557
|
|
42 |
.554
|
|
43 |
.540
|
|
44 |
.538
|
|
45 |
.533
|
|
46 |
.529
|
|
47 |
.527
|
|
48 |
.527
|
|
49 |
.521
|
|
50 |
.513
|
|
51 |
.511
|
|
52 |
.509
|
|
53 |
.506
|
|
54 |
.505
|
|
55 |
.504
|
|
56 |
.483
|
|
57 |
.481
|
|
58 |
.464
|
|
59 |
.463
|
|
60 |
.462
|
|
61 |
.461
|
|
62 |
.459
|
|
63 |
.456
|
|
64 |
.456
|
|
65 |
.455
|
|
66 |
.454
|
|
67 |
.437
|
|
68 |
.431
|
|
69 |
.429
|
|
70 |
.424
|
|
71 |
.413
|
|
72 |
.410
|
|
73 |
.409
|
|
74 |
.399
|
|
75 |
.393
|
|
76 |
.384
|
|
77 |
.380
|
|
78 |
.380
|
|
79 |
.375
|
|
80 |
.369
|
|
81 |
.369
|
|
82 |
.366
|
|
83 |
.366
|
|
84 |
.365
|
|
85 |
.359
|
|
86 |
.358
|
|
87 |
.355
|
|
88 |
.354
|
|
89 |
.349
|
|
90 |
.345
|
|
91 |
.336
|
|
92 |
.331
|
|
93 |
.330
|
|
94 |
.329
|
|
95 |
.328
|
|
96 |
.327
|
|
97 |
.323
|
|
98 |
.322
|
|
99 |
.318
|
|
100 |
.310
|
|
101 |
.309
|
|
102 |
.308
|
|
103 |
.300
|
|
104 |
.285
|
|
105 |
.271
|
|
106 |
.256
|
|
107 |
.254
|
|
108 |
.252
|
|
109 |
.245
|
|
110 |
.245
|
|
111 |
.244
|
|
112 |
.243
|
|
113 |
.242
|
|
114 |
.240
|
|
115 |
.233
|
|
116 |
.230
|
|
117 |
.229
|
|
118 |
.228
|
|
119 |
.215
|
|
120 |
.213
|
|
121 |
.213
|
|
122 |
.211
|
|
123 |
.203
|
|
124 |
.201
|
|
125 |
.188
|
|
126 |
.184
|
|
127 |
.180
|
|
128 |
.173
|
|
129 |
.166
|
|
130 |
.158
|
|
131 |
.158
|
|
132 |
.158
|
|
133 |
.149
|
|
134 |
.144
|
|
135 |
.139
|
|
136 |
.131
|
|
137 |
.120
|
|
138 |
.119
|
|
139 |
.114
|
|
140 |
.107
|
|
141 |
.104
|
|
142 |
.103
|
|
143 |
.103
|
|
144 |
.101
|
|
145 |
.099
|
|
146 |
.099
|
|
147 |
.097
|
|
148 |
.093
|
|
149 |
.092
|
|
150 |
.084
|
|
151 |
.082
|
|
152 |
.082
|
|
153 |
.078
|
|
154 |
.075
|
|
155 |
.066
|
|
156 |
.063
|
|
157 |
.060
|
|
158 |
.057
|
|
159 |
.057
|
|
160 |
.052
|
|
161 |
.048
|
|
162 |
.035
|
|
163 |
.035
|
|
164 |
.033
|
|
165 |
.030
|
|
166 |
.023
|
|
167 |
.022
|
|
168 |
.019
|
|
169 |
.015
|
|
170 |
.011
|
|
171 |
.009
|
|
172 |
.008
|
|
173 |
.002
|
|
174 |
.001
|
|
175 |
.000
|
|
176 |
.000
|
|
177 |
.000
|
|
178 |
.000
|
|
179 |
.000
|
|
180 |
.000
|
|
181 |
.000
|
|
182 |
.001
|
|
183 |
.001
|
|
184 |
.001
|
|
185 |
.001
|
|
186 |
.002
|
|
187 |
.002
|
|
188 |
.005
|
|
189 |
.016
|
|
190 |
X
|
|
191 |
X
|
|
192 |
X
|
|
193 |
X
|
|
194 |
X
|
|
195 |
X
|
|
196 |
X
|
|
197 |
X
|
|
198 |
X
|
|
199 |
X
|
|
200 |
X
|
|
201 |
X
|
|
202 |
X
|
|
203 |
X
|
|
204 |
X
|
Benchmark bibtex
@inproceedings{santurkar2019computer, title={Computer Vision with a Single (Robust) Classifier}, author={Shibani Santurkar and Dimitris Tsipras and Brandon Tran and Andrew Ilyas and Logan Engstrom and Aleksander Madry}, booktitle={ArXiv preprint arXiv:1906.09453}, year={2019} }
Ceiling
Not availableData: tong.Coggan2024_fMRI.IT
Metric: rdm