Sample stimuli










How to use
from brainscore_vision import load_benchmark benchmark = load_benchmark("ObjectNet-top1") score = benchmark(my_model)
Model scores
Min Alignment
Max Alignment
Rank |
Model |
Score |
---|---|---|
1 |
X
|
|
2 |
X
|
|
3 |
X
|
|
4 |
X
|
|
5 |
X
|
|
6 |
X
|
|
7 |
X
|
|
8 |
X
|
|
9 |
X
|
|
10 |
X
|
|
11 |
X
|
|
12 |
X
|
|
13 |
X
|
|
14 |
X
|
|
15 |
X
|
|
16 |
X
|
|
17 |
X
|
|
18 |
X
|
|
19 |
X
|
|
20 |
X
|
|
21 |
X
|
|
22 |
X
|
|
23 |
X
|
|
24 |
X
|
|
25 |
X
|
|
26 |
X
|
|
27 |
X
|
|
28 |
X
|
|
29 |
X
|
|
30 |
X
|
|
31 |
X
|
|
32 |
X
|
|
33 |
X
|
|
34 |
X
|
|
35 |
X
|
|
36 |
X
|
|
37 |
X
|
|
38 |
X
|
|
39 |
X
|
|
40 |
X
|
|
41 |
X
|
|
42 |
X
|
|
43 |
X
|
|
44 |
X
|
|
45 |
X
|
|
46 |
X
|
|
47 |
X
|
|
48 |
X
|
|
49 |
X
|
|
50 |
X
|
|
51 |
X
|
|
52 |
X
|
|
53 |
X
|
|
54 |
X
|
|
55 |
X
|
|
56 |
X
|
|
57 |
X
|
|
58 |
X
|
|
59 |
X
|
|
60 |
X
|
|
61 |
X
|
|
62 |
X
|
|
63 |
X
|
|
64 |
X
|
|
65 |
X
|
|
66 |
X
|
|
67 |
X
|
|
68 |
X
|
|
69 |
X
|
|
70 |
X
|
|
71 |
X
|
|
72 |
X
|
|
73 |
X
|
|
74 |
X
|
|
75 |
X
|
|
76 |
X
|
|
77 |
X
|
|
78 |
X
|
|
79 |
X
|
|
80 |
X
|
|
81 |
X
|
|
82 |
X
|
|
83 |
X
|
|
84 |
X
|
|
85 |
X
|
|
86 |
X
|
|
87 |
X
|
|
88 |
X
|
|
89 |
X
|
|
90 |
X
|
|
91 |
X
|
|
92 |
X
|
|
93 |
X
|
|
94 |
X
|
|
95 |
X
|
|
96 |
X
|
|
97 |
X
|
|
98 |
X
|
|
99 |
X
|
|
100 |
X
|
|
101 |
X
|
|
102 |
X
|
|
103 |
X
|
|
104 |
X
|
|
105 |
X
|
|
106 |
X
|
|
107 |
X
|
|
108 |
X
|
|
109 |
X
|
|
110 |
X
|
|
111 |
X
|
|
112 |
X
|
|
113 |
X
|
|
114 |
X
|
|
115 |
X
|
|
116 |
X
|
|
117 |
X
|
|
118 |
X
|
|
119 |
X
|
|
120 |
X
|
|
121 |
X
|
|
122 |
X
|
|
123 |
X
|
|
124 |
X
|
|
125 |
X
|
|
126 |
X
|
|
127 |
X
|
|
128 |
X
|
|
129 |
X
|
|
130 |
X
|
|
131 |
X
|
|
132 |
X
|
|
133 |
X
|
|
134 |
X
|
|
135 |
X
|
|
136 |
X
|
|
137 |
X
|
|
138 |
X
|
|
139 |
X
|
|
140 |
X
|
|
141 |
X
|
|
142 |
X
|
|
143 |
X
|
|
144 |
X
|
|
145 |
X
|
|
146 |
X
|
|
147 |
X
|
|
148 |
X
|
|
149 |
X
|
|
150 |
X
|
|
151 |
X
|
|
152 |
X
|
|
153 |
X
|
|
154 |
X
|
|
155 |
X
|
|
156 |
X
|
|
157 |
X
|
|
158 |
X
|
|
159 |
X
|
|
160 |
X
|
|
161 |
X
|
|
162 |
X
|
|
163 |
X
|
|
164 |
X
|
|
165 |
X
|
|
166 |
X
|
|
167 |
X
|
|
168 |
X
|
|
169 |
X
|
|
170 |
X
|
|
171 |
X
|
|
172 |
X
|
|
173 |
X
|
|
174 |
X
|
|
175 |
X
|
|
176 |
X
|
|
177 |
X
|
|
178 |
X
|
|
179 |
X
|
|
180 |
X
|
|
181 |
X
|
|
182 |
X
|
|
183 |
X
|
|
184 |
X
|
|
185 |
X
|
|
186 |
X
|
|
187 |
X
|
|
188 |
X
|
|
189 |
X
|
|
190 |
X
|
|
191 |
X
|
|
192 |
X
|
|
193 |
X
|
|
194 |
X
|
|
195 |
X
|
|
196 |
X
|
|
197 |
X
|
Benchmark bibtex
@inproceedings{DBLP:conf/nips/BarbuMALWGTK19, author = {Andrei Barbu and David Mayo and Julian Alverio and William Luo and Christopher Wang and Dan Gutfreund and Josh Tenenbaum and Boris Katz}, title = {ObjectNet: {A} large-scale bias-controlled dataset for pushing the limits of object recognition models}, booktitle = {NeurIPS 2019}, pages = {9448--9458}, year = {2019}, url = {https://proceedings.neurips.cc/paper/2019/hash/97af07a14cacba681feacf3012730892-Abstract.html}, }
Ceiling
1.00.Note that scores are relative to this ceiling.
Data: ObjectNet
Metric: top1